Math, asked by sajan6491, 17 days ago

 {\begin{gathered}\begin{gathered}\ \ \begin{gathered}\begin{gathered}\displaystyle \text{Let :}\\ \\\displaystyle \rm f(x)=\int {\dfrac{dx}{e^x+8e^{-x}+4e^{-3x}}} \\ \\ \\\displaystyle \text{And} \\ \\\displaystyle \rm g(x)=\int {\dfrac{dx}{e^{3x}+8e^{x}+4e^{-x}}} \\ \\ \\\displaystyle \text{Then find value of :} \\ \\\displaystyle \rm \int {(f(x)-2g(x))dx} \, \quad \text{And} \\ \\ \\\displaystyle \rm\int {(f(x)+2g(x))dx}\end{gathered}\end{gathered} \ \end{gathered} \end{gathered}}

Answers

Answered by mathdude500
9

Appropriate Question :-

 {\begin{gathered}\begin{gathered}\ \ \begin{gathered}\begin{gathered}\displaystyle \text{Let :}\\ \\\displaystyle \rm f(x)=\int {\dfrac{dx}{e^x+8e^{-x}+4e^{-3x}}} \\ \\ \\\displaystyle \text{And} \\ \\\displaystyle \rm g(x)=\int {\dfrac{dx}{e^{3x}+8e^{x}+4e^{-x}}} \\ \\ \\\displaystyle \text{Then find value of :} \\ \\\displaystyle \rm  {f(x)-2g(x)} \, \quad \text{And} \\ \\ \\\displaystyle \rm {f(x)+2g(x)}\end{gathered}\end{gathered} \ \end{gathered} \end{gathered}}

\large\underline{\sf{Solution-}}

Given that,

\rm \: \displaystyle \rm f(x)=\int {\dfrac{dx}{e^x+8e^{-x}+4e^{-3x}}} \\

can be rewritten as

\rm \: \displaystyle \rm f(x)=\int {\dfrac{dx}{e^x+\dfrac{8}{{e}^{x}}  + \dfrac{4}{{e}^{3x}} }} \\

\color{green}\rm \: \displaystyle \rm f(x)=\int {\dfrac{{e}^{3x} \: dx}{{e}^{4x}+8{e}^{2x} + 4}} -  -  - (1) \\

Also, given that

\displaystyle \rm g(x)=\int {\dfrac{dx}{e^{3x}+8e^{x}+4e^{-x}}} \\

can be rewritten as

\displaystyle \rm g(x)=\int {\dfrac{dx}{e^{3x}+8e^{x}+\dfrac{4}{{e}^{x}} }} \\

\color{green}\rm \: \displaystyle \rm g(x)=\int {\dfrac{{e}^{x} \: dx}{{e}^{4x}+8{e}^{2x} + 4}} -  -  - (2) \\

Now, Consider

\displaystyle \rm {f(x)-2g(x)} \\

On substituting the values, we get

\rm \:  = \displaystyle \rm\int {\dfrac{({e}^{3x} - 2{e}^{x})dx}{e^{4x}+8e^{2x}+4}} \\

can be rewritten as

\rm \:  = \displaystyle \rm\int {\dfrac{({e}^{2x} - 2){e}^{x}dx}{e^{4x}+8e^{2x}+4}} \\

Now, we use method of Substitution to evaluate this integral.

So, Substitute

\rm \: {e}^{x} = y\rm\implies \:{e}^{x}dx = dy \\

So, above integral can be rewritten as

 = \displaystyle \rm \int  \frac{{y}^{2}  - 2}{ {y}^{4}  +  {8y}^{2}  + 4} \: dy \\

can be further rewritten as on dividing numerator and denominator by y^2,

 = \displaystyle \rm \int  \frac{1 - \dfrac{2}{ {y}^{2} } }{ {y}^{2}  +  8  + \dfrac{4}{ {y}^{2} }} \: dy \\

\displaystyle \rm \int  \frac{1 - \dfrac{2}{ {y}^{2} } }{ {y}^{2}+ \dfrac{4}{ {y}^{2}} + 8} \: dy \\

\displaystyle \rm \int  \frac{1 - \dfrac{2}{ {y}^{2} } }{ {\bigg(y + \dfrac{2}{y} \bigg) }^{2} - 4  + 8} \: dy \\

\displaystyle \rm \int  \frac{1 - \dfrac{2}{ {y}^{2} } }{ {\bigg(y + \dfrac{2}{y} \bigg) }^{2}  + 4} \: dy \\

Now, Substitute

\rm \: y + \dfrac{2}{y} = z\rm\implies \:\bigg(1 - \dfrac{2}{ {y}^{2} }\bigg)dy = dz \\

So, above expression can be rewritten as

\rm \:  = \displaystyle \rm \int  \frac{dz}{ {z}^{2}  + 4}  \\

\rm \:  = \displaystyle \rm \int  \frac{dz}{ {z}^{2}  +  {2}^{2} }  \\

\rm \:  =  \dfrac{1}{2}  {tan}^{ - 1}  \dfrac{z}{2}  + c \\

\rm \:  =  \dfrac{1}{2}  {tan}^{ - 1}  \dfrac{ {y}^{2} + 2}{2y}  + c \\

\rm \:  =  \dfrac{1}{2}  {tan}^{ - 1}  \dfrac{{e}^{2x} + 2}{2{e}^{x}}  + c \\

Now, Consider

\displaystyle \rm  {f(x) + 2g(x)} \\

\rm \:  = \displaystyle \rm\int {\dfrac{({e}^{3x} + 2{e}^{x})dx}{e^{4x}+8e^{2x}+4}} \\

\rm \:  = \displaystyle \rm\int {\dfrac{({e}^{2x} + 2){e}^{x}dx}{e^{4x}+8e^{2x}+4}} \\

Now, we use method of Substitution to evaluate this integral.

So, Substitute

\rm \: {e}^{x} = y\rm\implies \:{e}^{x}dx = dy \\

 = \displaystyle \rm \int  \frac{{y}^{2} +  2}{ {y}^{4}  +  {8y}^{2}  + 4} \: dy \\

 = \displaystyle \rm \int  \frac{1 +  \dfrac{2}{ {y}^{2} } }{ {y}^{2}  +  8  + \dfrac{4}{ {y}^{2} }} \: dy \\

\displaystyle \rm \int  \frac{1 + \dfrac{2}{ {y}^{2} } }{ {\bigg(y  - \dfrac{2}{y} \bigg) }^{2}  + 4  + 8} \: dy \\

Now, Substitute

\rm \: y - \dfrac{2}{y} = z\rm\implies \:\bigg(1 + \dfrac{2}{ {y}^{2} }\bigg)dy = dz \\

So, above expression can be rewritten as

\rm \:  = \displaystyle \rm \int  \frac{dz}{ {z}^{2} +  12}  \\

\rm \:  = \displaystyle \rm \int  \frac{dz}{ {z}^{2} +  {(2 \sqrt{3})}^{2} }  \\

\rm \:  =  \dfrac{1}{2 \sqrt{3} }  {tan}^{ - 1}  \dfrac{z}{2 \sqrt{3} }  + c \\

\rm \:  =  \dfrac{1}{2 \sqrt{3} }  {tan}^{ - 1}  \dfrac{ {y}^{2} - 2}{2 \sqrt{3} y}  + c \\

\rm \:  =  \dfrac{1}{2 \sqrt{3} }  {tan}^{ - 1}  \dfrac{{e}^{2x} - 2}{2 \sqrt{3} {e}^{x}}  + c \\

Similar questions