Math, asked by sajan6491, 5 hours ago

\begin{gathered}\footnotesize \sf If \: \sum\limits_{n=1}^\infty \: \dfrac{1}{n^z} = 0 \: where, z\in{\mathbb{C}} \: and \: z\not=-2a \: \forall \: a\in N \\ \footnotesize \sf then \: find \: the \: value \: of \: {\mathfrak{Re}}(z)\end{gathered}

Answers

Answered by p24562096
2

We can use the Euler-Maclaurin summation formula to approximate the value of the series for \rm{\mathfrak{Re}}(z)&gt;1. The formula states that for a function f(x) and integers a, b such that a<b and h=b-a, we have:

 \rm \sum_{n=a}^{b} f(n) = \int_a^b f(x) \, dx + \frac{1}{2}(f(a)+f(b)) + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(f^{(2k-1)}(b)-f^{(2k-1)}(a)\right) \\

where \rm B_{2k} are the Bernoulli numbers and \rm f^{(n)}(x) denotes the n-th derivative of f(x).

In our case, we have \rm f(n) = \frac{1}{n^z} and a=1, b=N, so we can write:

 \rm \sum_{n=1}^{N} \frac{1}{n^z} = \int_1^N \frac{1}{x^z} \, dx + \frac{1}{2}(1+N^{-z}) + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{(-1)^{2k-1}(z)}{(2k-1)!}N^{-z-2k+1} - \frac{(-1)^{2k-1}(z)}{(2k-1)!}1^{-z-2k+1}\right) \\

where we have used the fact that

 \rm f^{(n)}(x) = (-1)^{n-1} z(z+1)\cdots(z+n-1) x^{-z-n}.

Taking the limit as \rm N\rightarrow\infty, the integral term goes to zero if \rm{\mathfrak{Re}}(z)&gt;1, and the series converges if \rm{\mathfrak{Re}}(z)&gt;-1. Therefore, we can write:

 \rm 0 = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \left(\frac{(-1)^{2k-1}(z)}{(2k-1)!} 0 - \frac{(-1)^{2k-1}(z)}{(2k-1)!}1^{-z-2k+1}\right) \\

which simplifies to:

 \rm0 = \frac{1}{2} + \sum_{k=1}^{\infty} \frac{B_{2k}}{(2k)!} \frac{(-1)^{2k-1}(z)}{(2k-1)!} \\

This is an infinite series in z, but we can use the fact that the Bernoulli numbers satisfy the generating function:

 \rm \frac{t}{e^t-1} = \sum_{k=0}^{\infty} \frac{B_k}{k!} t^k \\

to write:

 \rm 0 = \frac{1}{2} + \frac{t}{e^t-1} \frac{z}{t} \\

where t=-2π i. This equation can be solved for z as:

 \rm z = \frac{2\pi i}{e^{2\pi i}-1} = \frac{2\pi i}{1} = 2\pi i \\

Therefore, {\mathfrak{Re}}(z) = 0.

Note that this solution agrees with the fact that the series converges for {\mathfrak{Re}}(z)&gt;-1, since the series diverges for {\mathfrak{Re}}(z)\leq -1.

Similar questions