Math, asked by OreoMagie, 13 hours ago


\begin{gathered} \ {if \: \frac{1}{ \sqrt{5} + 2 } + \frac{1}{2 + \sqrt{3} } + \frac{1}{ \sqrt{3} + \sqrt{2} } + \frac{1}{ \sqrt{2} + 1 }} \\ \\ \tt{ = a + b \sqrt{c} \: \: then \: find \: the \: value \: of \: a +b  +c }\end{gathered}

No spamming ❌
Step by step solution needed ✔️​

Answers

Answered by 12thpáìn
6

Given

  •  \sf {\: \dfrac{1}{ \sqrt{5} + 2 } + \dfrac{1}{2 + \sqrt{3} } + \dfrac{1}{ \sqrt{3} + \sqrt{2} } + \dfrac{1}{ \sqrt{2} + 1 } = a + b \sqrt{c} }

To Find

  • a, b, and c

Solution

\sf {~~~     \implies  \: \dfrac{1}{ \sqrt{5} + 2 } + \dfrac{1}{2 + \sqrt{3} } + \dfrac{1}{ \sqrt{3} + \sqrt{2} } + \dfrac{1}{ \sqrt{2} + 1 } = a + b \sqrt{c} } \\

  • Rationalize the denominator term

\sf {~~~     \implies  \:  \bigg(\dfrac{1}{ \sqrt{5}  + 2 }  \times  \dfrac{ \sqrt{5}  - 2}{ \sqrt{5} - 2 } \bigg) +\bigg( \dfrac{1}{2 + \sqrt{3} }  \times  \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} } \bigg)+\bigg( \dfrac{1}{ \sqrt{3} + \sqrt{2} } \times  \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3} -  \sqrt{2}  }\bigg)  +\bigg( \dfrac{1}{ \sqrt{2} + 1 }  \times  \dfrac{ \sqrt{2} - 1 }{ \sqrt{2} - 1 } \bigg)= a + b \sqrt{c} } \\

  • Using Identity → (a+b)(a-b) = a²-b²

\\\sf {~~~     \implies  \:  \bigg(\dfrac{ \sqrt{5}  - 2}{ (\sqrt{5})^{2}   -  {2}^{2}  }   \bigg) +\bigg( \dfrac{2 -  \sqrt{3} }{ {2}^{2}   -  ( { \sqrt{3}}) ^{2}  }   \bigg) + \bigg( \dfrac{ \sqrt{3} -  \sqrt{2}  }{ (\sqrt{3})^{2}  -  (\sqrt{2} )^{2} } \bigg)  +\bigg( \dfrac{ \sqrt{2}  - 1}{ (\sqrt{2} )^{2}  -  {1}^{2} }  \bigg)= a + b \sqrt{c} }

\sf {~~~     \implies  \:  \bigg(\dfrac{ \sqrt{5}  - 2}{ 5 - 4  }   \bigg) +\bigg( \dfrac{2 -  \sqrt{3} }{ 4 - 3 }   \bigg)+\bigg( \dfrac{ \sqrt{3} -  \sqrt{2}  }{ 3 - 2 } \bigg)  +\bigg( \dfrac{ \sqrt{2}  - 1}{ 2 - 1 }  \bigg)= a + b \sqrt{c} }

\sf {~~~     \implies  \: \sqrt{5}  - 2 +2 -  \sqrt{3} + \sqrt{3}  -  \sqrt{2}   + \sqrt{2} -  1  = a + b \sqrt{c} }

\sf {~~~     \implies  \: \sqrt{5}   \:  \:   \cancel  {- 2}   \:  \:  \cancel  {+2 }  \:  \:  \cancel  {-  \sqrt{3}}   \:  \: \cancel  { + \sqrt{3}}    \:  \:  \cancel  {-  \sqrt{2}}      \cancel  {+ \sqrt{2}} -  1  = a + b \sqrt{c} }

\sf {~~~     \implies   -  1  + 1 \sqrt{5}  = a + b \sqrt{c} }\\

  • On Comparing Both side's

 \\ \sf ~~~ a = (-1) \\ \sf ~~~ b = 1 \\ \sf ~~~ c = 5 \\  \\

  • \begin{gathered}\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\gray{\begin{gathered}\tiny\begin{gathered}\small{\small{\small{\small{\small{\small{\small{\small{\small{\small{\begin{gathered}\begin{gathered}\begin{gathered}\\\\\begin{gathered}\begin{gathered}\begin{gathered}\begin{gathered}\red{ \bigstar} \: \underline{\bf{\orange{More \: Useful \: Formula}}}\\ {\boxed{\begin{array}{cc}\dashrightarrow \sf(a + b)^{2} = {a}^{2} + {b}^{2} + 2ab \\\\\dashrightarrow \sf(a - b)^{2} = {a}^{2} + {b}^{2} - 2ab \\\\\dashrightarrow \sf(a + b)(a - b) = {a}^{2} - {b}^{2} \\\\\dashrightarrow \sf(a + b) ^{3} = {a}^{3} + b^{3} + 3ab(a + b) \\\\ \dashrightarrow\sf(a - b) ^{3} = {a}^{3} - b^{3} - 3ab(a - b) \\ \\\dashrightarrow\sf a ^{3} + {b}^{3} = (a + b)(a ^{2} + {b}^{2} - ab) \\\\\dashrightarrow \sf a ^{3} - {b}^{3} = (a - b)(a ^{2} + {b}^{2} + ab )\\\\\dashrightarrow \sf{a²+b²=(a+b)²-2ab}\\ \end{array}}}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}\end{gathered}}}}}}}}}}}\end{gathered}\end{gathered}}\end{gathered}\end{gathered}\end{gathered} \end{gathered}\\ \end{gathered}
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:\dfrac{1}{ \sqrt{5} + 2 } + \dfrac{1}{2 + \sqrt{3} } + \dfrac{1}{ \sqrt{3} + \sqrt{2} } + \dfrac{1}{ \sqrt{2} + 1 } \\ \\ \tt{ = a + b \sqrt{c}}

Consider,

\red{\rm :\longmapsto\:\dfrac{1}{ \sqrt{5}  + 2}}

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{5} + 2 }  \times \dfrac{ \sqrt{5}  - 2}{ \sqrt{5}  - 2}

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  - 2}{ {( \sqrt{5}) }^{2}  -  {2}^{2} }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  - 2}{5 - 4}

\rm \:  =  \:  \: \dfrac{ \sqrt{5}  - 2}{1}

\rm \:  =  \:  \:  \sqrt{5}  - 2

Consider,

\red{\rm :\longmapsto\:\dfrac{1}{2 +  \sqrt{3} } }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{2 +  \sqrt{3} }  \times \dfrac{2 -  \sqrt{3} }{2 -  \sqrt{3} }

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{ {2}^{2}  -  {( \sqrt{3} )}^{2} }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{4 - 3}

\rm \:  =  \:  \: \dfrac{2 -  \sqrt{3} }{1}

\rm \:  =  \:  \: 2 -  \sqrt{3}

Consider,

\red{\rm :\longmapsto\:\dfrac{1}{ \sqrt{3}  +  \sqrt{2} } }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{3} +  \sqrt{2}  }  \times \dfrac{ \sqrt{3} -  \sqrt{2}  }{ \sqrt{3}  -  \sqrt{2} }

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2} )}^{2} }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{3 - 2}

\rm \:  =  \:  \: \dfrac{ \sqrt{3}  -  \sqrt{2} }{1}

\rm \:  =  \:  \:  \sqrt{3}  -  \sqrt{2}

Consider,

\red{\rm :\longmapsto\:\dfrac{1}{ \sqrt{2}   +  1} }

On rationalizing the denominator, we get

\rm \:  =  \:  \: \dfrac{1}{ \sqrt{2}  + 1}  \times \dfrac{ \sqrt{2}  - 1}{ \sqrt{2} - 1 }

\rm \:  =  \:  \: \dfrac{ \sqrt{2}  - 1}{ {( \sqrt{2} )}^{2} -  {(1)}^{2} }

\red{\bigg \{ \because \:(x + y)(x - y) =  {x}^{2}  -  {y}^{2}  \bigg \}}

\rm \:  =  \:  \: \dfrac{ \sqrt{2}  - 1}{2 - 1}

\rm \:  =  \:  \: \dfrac{ \sqrt{2}  - 1}{1}

\rm \:  =  \:  \:  \sqrt{2} - 1

Now, Consider

\rm :\longmapsto\:\dfrac{1}{ \sqrt{5} + 2 } + \dfrac{1}{2 + \sqrt{3} } + \dfrac{1}{ \sqrt{3} + \sqrt{2} } + \dfrac{1}{ \sqrt{2} + 1 } \\ \\ \tt{ = a + b \sqrt{c}}

On substituting all the values evaluated above, we get

\rm :\longmapsto\:\sqrt{5} - 2 + 2 -  \sqrt{3}  +  \sqrt{3}  -  \sqrt{2}  +  \sqrt{2}  - 1 = a + b \sqrt{c}

\rm :\longmapsto\:\sqrt{5} - 1 = a + b \sqrt{c}

\rm :\longmapsto\: - 1 + \sqrt{5} = a + b \sqrt{c}

\rm :\longmapsto\: - 1 + 1\sqrt{5} = a + b \sqrt{c}

On comparing, we get

\red{\rm :\longmapsto\:a =  - 1}

\red{\rm :\longmapsto\:b =  1}

\red{\rm :\longmapsto\:c =  5}

Therefore,

\red{\bf :\longmapsto\:a + b + c =  - 1 + 1 + 5 = 5}

Similar questions