Math, asked by Anonymous, 1 month ago

\bf{Evaluate}\left|\begin{array}{ccc}x^{2}-x+1 &x-1\\x+1&x-1\end{array}\right|

Answers

Answered by shadowsabers03
8

We're asked to evaluate the determinant,

\small\text{$\longrightarrow\Delta=\left|\begin{array}{cc}x^2-x+1&x-1\\x+1&x-1\end{array}\right|$}

Performing the operation \small\text{$C_1\to C_1+C_2,$}

\small\text{$\longrightarrow\Delta=\left|\begin{array}{cc}x^2-x+1+(x-1)&x-1\\x+1+(x-1)&x-1\end{array}\right|$}

\small\text{$\longrightarrow\Delta=\left|\begin{array}{cc}x^2&x-1\\2x&x-1\end{array}\right|$}

Taking \small\text{$x$} common from \small\text{$C_1,$}

\small\text{$\longrightarrow\Delta=x\left|\begin{array}{cc}x&x-1\\2&x-1\end{array}\right|$}

Performing the operation \small\text{$R_1\to R_1-R_2,$}

\small\text{$\longrightarrow\Delta=x\left|\begin{array}{cc}x-2&0\\2&x-1\end{array}\right|$}

Now expanding the determinant,

\small\text{$\longrightarrow\Delta=x[(x-1)(x-2)-2\times0]$}

\small\text{$\longrightarrow\underline{\underline{\Delta=x(x-1)(x-2)}}$}

Similar questions