Math, asked by Anonymous, 6 hours ago


\bf\red{QƲƐŞƬiøƝ}
\bf{\displaystyle\lim_{y \to 0}\rm \frac{(x + y).sec(x + y) - xsecx}{ {y}}}

\bf\fbox\green{❥︎Don't spam \:  plz}
\bf\fbox\pink{Need Quality answers}

Answers

Answered by sajidabhati02
2

Step-by-step explanation:

The value of

y→0

lim

y

(x+y)sec(x+y)−xsecx

is equal to

à sec square

Answered by prabhakardeva657
6

Answer:

\bf\red{QƲƐŞƬiøƝ}⠀⠀⠀

\bf{\displaystyle\lim_{y \to 0}\rm \frac{(x + y).sec(x + y) - xsecx}{ {y}}}⠀⠀⠀

\bf\red{AƝŞᗯƐR}

\bf{↦ \: \displaystyle\lim_{y \to 0}\rm \ \frac{x \: sec(x + y) + y \: sec(x + y) - x \: secx}{y} }

\bf{↦ \: \displaystyle\lim_{y \to 0}\rm \ \frac{x \:[ sec(x + y) - sec \: x] + y \: sec(x + y)}{y} }⠀⠀

\bf{↦ \: \displaystyle\lim_{y \to 0}\rm \  \frac{x}{y} \frac{ \:[  \frac{1}{cos(x + y)} -  \frac{1}{cos \: x}  ] +  \frac{y}{y} [ \frac{1}{cos(x + y)}  ]}{y} }⠀⠀

\bf{↦ \: \displaystyle\lim_{y \to 0}\rm \  \:  \:  \frac{x}{y} \frac{ \:[  \frac{cos - cs(x + y)}{cos(x + y)}  ] +  [ \frac{1}{cos(x + y)}  ]}{y} }⠀⠀

\bf{↦ \: \displaystyle\lim_{y \to 0}\rm \  \:  \:  \frac{x}{y} \frac{ \:[ 2 \: sin \:  \frac{x + x + y}{2} . \: sin \ \frac{x + y - x}{2}  ] +  [ \frac{1}{cos(x + y)}  ]}{y} }⠀⠀

\bf{↦ \: \displaystyle\lim_{y \to 0}\rm \  \:  \:  \frac{x}{y} \frac{ \:[ \frac{sin \: 2x + y}{2} . \: sin \frac{y}{2} ] +  [ \frac{1}{cos(x + y)}  ]}{y} }⠀⠀

\bf{↦ \: 2x  \:  \: \frac{\displaystyle\lim_{y \to 0}\rm \ \:  \:  \frac{sin(x + y)}{2}  \: \displaystyle\lim_{y \to 0}\rm \ \: sin \frac{y}{2} }⠀⠀</p><p></p><p>⠀{\displaystyle\lim_{y \to 0}\rm \ \: cos(x + y) \: \displaystyle\lim_{y \to 0}\rm \ \: cos \: x} \:  \:   +  \:  \: \displaystyle\lim_{y \to 0}\rm \ \:  \frac{1}{cos(x + y)} }⠀⠀

\bf{↦ \: 2x  \:  \: \frac{\displaystyle\lim_{y \to 0}\rm \ \:  \:  \frac{sin(x + y)}{2}  \: \displaystyle\lim_{y \to 0}\rm \ \: sin \ \frac{ \frac{y}{2} }{ \frac{y}{2}.2 }   }{\displaystyle\lim_{y \to 0}\rm \ \: cos(x + y) \: \displaystyle\lim_{y \to 0}\rm \ \: cos \: x} \:  \:   +  \:  \: \displaystyle\lim_{y \to 0}\rm \ \:  \frac{1}{cos(x + y)} }⠀⠀

\bf\green{N.T.L}

⠀⠀⠀⠀⠀⠀⠀Now Taking Limit ⠀⠀⠀⠀⠀⠀⠀

↦ \: \bf{ \frac{2x \times sinx}{cosx.cosx} \times  \frac{1}{2}  +  \frac{1}{cosx}  }

↦ \: \bf{x  \: tanx. secx + secx}

↦ \: \bf{x  \: secx. tanx + secx}

⠀⠀⠀⠀➾ \: \bf\pink{ sec x ( x \: tanx +1)}

Similar questions