Math, asked by Anonymous, 6 hours ago

\bf\red{Question:-}

\displaystyle\lim_{x \to 2}\ \bf{( \frac{tanx - sinx}{ {sin}^{3}x } )}



\sf\fbox{\underline\pink{Need Quality answer}}
\sf\fbox{\underline\green{dont \: spam}}

Answers

Answered by mathdude500
10

Appropriate Question :-

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{tanx - sinx}{ {sin}^{3} x}

 \green{\large\underline{\sf{Solution-}}}

Given expression is

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{tanx - sinx}{ {sin}^{3} x}

If we substitute directly x = 0,

\rm \:  =  \: \dfrac{tan0 - sin0}{ {sin}^{3} 0}

\rm \:  =  \: \dfrac{0 - 0}{0}

\rm \:  =  \: \dfrac{0}{0}

which is indeterminant form

So,

\rm :\longmapsto\:\displaystyle\lim_{x \to 0}\rm  \frac{tanx - sinx}{ {sin}^{3} x}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{ \dfrac{sinx}{cosx} - sinx }{ {sin}^{3} x}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm \dfrac{sinx\bigg[\dfrac{1}{cosx} - 1 \bigg]}{ {sin}^{3} x}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm \dfrac{1 - cosx}{cosx \:  {sin}^{2} x}

\rm \:  =  \:\displaystyle\lim_{x \to 0}\rm \frac{1}{cosx}   \times  \displaystyle\lim_{x \to 0}\rm \dfrac{1 - cosx}{1 - \:  {cos}^{2} x}

\rm \:  =  \: 1 \times \displaystyle\lim_{x \to 0}\rm  \frac{1 - cosx}{(1 - cosx)(1 + cosx)}

\rm \:  =  \: \displaystyle\lim_{x \to 0}\rm  \frac{1}{1 + cosx}

\rm \:  =  \: \dfrac{1}{1 + cos0}

\rm \:  =  \: \dfrac{1}{1 + 1}

\rm \:  =  \: \dfrac{1}{2}

Hence,

 \purple{\rm\implies \:\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx - sinx}{ {sin}^{3} x}  =  \frac{1}{2}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO LEARN

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{sinx}{x} = 1}}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{tanx}{x} = 1}}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{log(1 + x)}{x} = 1}}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {e}^{x}  - 1}{x} = 1}}}

 \green{\rm :\longmapsto\:\boxed{\tt{ \displaystyle\lim_{x \to 0}\rm  \frac{ {a}^{x}  - 1}{x} = loga}}}

Answered by ItzzTwinklingStar
32

Answer :

\displaystyle\lim_{x \to 2}\ \bf{( \frac{tanx - sinx}{ {sin}^{3}x } )} =  \frac{1}{2}  \\  \\

Explanation :

Transform the function in this way:

 \\ \tt  : \implies \frac{tanx-sinx}{x^3 }=  \frac{1}{x^3}( \frac {sinx}{cosx} - sinx) \\  \\  \\

 \\ \tt  : \implies   \frac{tanx -  \: sinx}{ {x}^{3} }  =  \frac{1}{ {x}^{3} }  (\frac{sinx  - sinxcosx}{cosx} )\\  \\  \\

 \\ \tt  : \implies   \frac{tanx -  \: sinx}{ {x}^{3} }  =  \frac{sinx}{ {x}^{3} }  (\frac{1 - cosx}{cosx} )\\  \\  \\

 \\ \tt  : \implies   \frac{tanx -  \: sinx}{ {x}^{3} }  \\  \\  \\

 \\ \tt  : \implies    \: ( \frac{sinx}{x} ) ( \frac{1 - cosx}{ {x}^{2} } ) (\frac{1}{cosx} ) \\  \\  \\

We can use now the well known trigonometric limit:

  \\ :  \implies \tt \: \lim_{x \to 2}\ \bf{\frac{sinx}{ x } } =  1  \\  \\

and using the trigonometric identity:

  \\ :  \implies \tt \: sin^2 \alpha = \frac{ (1-cos2alpha)}{2} \\  \\  \\

we have:

 \\  :  \implies\tt\lim_{x \to 2} {( \frac{1 - cosx}{ x {}^{2}  } )} =\lim_{x \to 2}  \frac{2sin {}^{2}( \frac{x}{2} ) }{ {x}^{2} }   =  \frac{1}{2} \\  \\  \\

 \\  :  \implies\tt\lim_{x \to 2}( \frac{sin( \frac{ x}{2} )}{ \frac{x}{2} } ) {}^{2} =  \frac{1}{2}  \\  \\  \\

While the third function is continuous so:

 \\  :  \implies\tt\lim_{x \to 2}  \:  \:  \: \frac{1}{cosx} =  \frac{1}{1} = 1    \\  \\  \\

and we can conclude that:

 :  \implies\tt\lim_{x \to 2}{( \frac{tanx - sinx}{ x^{3} } )}   \\  \\

  :  \implies\tt\lim_{x \to 2}  \: ( \frac{sinx}{x} ) ( \frac{1 - cosx}{ {x}^{2} } ) (\frac{1}{cosx} ) \\   \\  \\

:   \implies  \tt  \: 1 \times  \frac{1}{2}  \times 1 =  \frac{1}{2}  \\  \\  \\

Similar questions