Math, asked by Anonymous, 1 year ago

{\bold{\purple{\small{Good Afternoon}}}}

If
 {z}^{2}  +  \frac{1}{ {z}^{2} }  = 34
Then find the value of
 {z}^{3}  +  \frac{1}{ {z}^{3} }

Answers

Answered by siddhartharao77
7

Answer:

198

Step-by-step explanation:

Given Equation is z² + 1/z² = 34

⇒ z² + (1/z²) = 36 - 2

⇒ z² + (1/z²) + 2 = 36

⇒ (z + 1/z)² = 36

⇒ (z + 1/z) = 6.

On cubing both sides, we get

⇒ (z + 1/z)³ = (6)³

⇒ z³ + 1/z³ + 3(z + 1/z) = 216

⇒ z³ + 1/z³ + 3(6) = 216

⇒ z³ + 1/z³ + 18 = 216

⇒ z³ + 1/z³ = 216 - 18

z³ + 1/z³ = 198

Hope it helps!

Answered by Anonymous
11
\huge\bf\mathscr\pink{Your\: Answer}

198

step-by-step explanation:

Given,

{z}^{2} + \frac{1}{{z}^{2}}=34

Adding 2 on both sides we get,

=>  {z}^{2} + \frac{1}{ {z}^{2} } + 2= 34 + 2

=>  {z}^{2} + \frac{1}{ {z}^{2} } + 2× z × 1/z = 36

=> {(z+1/z)}^{2} = 36

=> z + 1/z = 6 ................ (i)

Now,

cubing both sides,

we get,


{(z+1/z)}^{3} = {6}^{3}............ from (i)

=> {z}^{3}+\frac{1}{{z}^{3}} + 3 × z × 1/z( z+1/z ) = 216

=>  {z}^{3} + \frac{1}{ {z}^{3} } + 3 × 6 = 216

=>  {z}^{3} + \frac{1}{ {z}^{3} } = 216 - 18

=>  {z}^{3} + \frac{1}{ {z}^{3} } = 198,
Similar questions