Math, asked by Anonymous, 1 month ago


 \bold \red{Differentiate \:  y=x^2}


❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​

Answers

Answered by Sahan677
14

 \bold{y =  {x}^{2}}

 \bold{ \frac{Δy}{\Delta x} = { \displaystyle \lim_{Δx \to \: 0}} \:  \frac{(x +Δx) {}^{2} -  {x}^{2}   }{Δx} }

 \bold{{ \displaystyle \lim_{Δx \to \: 0}} \:  \frac{x {}^{2} +Δx {}^{2}  + 2xΔx -  {x}^{2}   }{Δx} }

 \bold{{ \displaystyle \lim_{Δx \to \: 0}} \:  \frac{Δx {}^{2}  + 2xΔx  }{Δx} }

 \bold{{ \displaystyle \lim_{Δx \to \: 0}} \:  \frac{Δx(Δx {}^{}  + 2x)  }{Δx} }

 \bold{{ \displaystyle \lim_{Δx \to \: 0}} \: Δx{}^{}  + 2x}

Use limit and approximately put Δx=0

 \bold{ \frac{∂\: y}{ ∂\: x} = 2x }

Answered by diwanamrmznu
8

EVALUTION★

  •  \bold \red{Differentiate \: y=x^2}

  • we know that

  •  \frac{d}{dx} x = nx {}^{n - 1}  \\

  •  \frac{d}{dx}(x) {}^{2}  = 2x {}^{2 - 1}  \\  \\  \\  = 2x

____________________________________

I hope it helps you

Similar questions