Math, asked by TrustedAnswerer19, 1 month ago


{{\boxed{\begin{array}{cc} \sf \: find \: the \: area \: of \: the \: region \: enclosed  \\  \\ \sf \: by  \: the \: following \: curves :  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\   \boxed{\bf \:y_1 =  {e}^{x} }  \\  \\   \boxed{\bf \: y_2 =   {x}^{2}  - 1}  \\  \\  \boxed{ \bf \: x = 1} \\  \\  \boxed{ \bf \: x =  - 1}\end{array}}}}

Note :
Sketch must be included. ​

Answers

Answered by rekhasn1988
6

Answer:

hope it will help you

Step-by-step explanation:

If it is right then, mark as brainlist

If it is not helpful then report it

Attachments:
Answered by mathdude500
47

\large\underline{\sf{Solution-}}

\rm :\longmapsto\:y =  {e}^{x}

represents an exponential curve passes through the point (0, 1).

and

\rm :\longmapsto\:y =  {x}^{2} - 1

represents the upper parabola with vertex (0, - 1) and intersects the x - axis at ( - 1, 0 ) and ( 1, 0 ).

So,

Required area bounded between the curves

\rm :\longmapsto\:y =  {e}^{x}, \: y =  {x}^{2} - 1, \: x =  - 1 \:  \: and \:  \: x = 1 \: is

\rm \:  =  \:\displaystyle\int_{ - 1}^1 \:  {e}^{x}dx \:  +  \: \displaystyle\int_{ - 1}^1 \:  - ( {x}^{2} - 1) \: dx

[ - ve sign because curve is below x - axis ]

\rm \:  =  \:\displaystyle\int_{ - 1}^1 \:  {e}^{x}dx \:  +  \: \displaystyle\int_{ - 1}^1 \:  (-{x}^{2} + 1)\: dx

\rm \:  =  \: \bigg| {e}^{x} \bigg|_{ - 1}^1 + \bigg[x - \dfrac{ {x}^{3} }{3} \bigg]_{ - 1}^1

\rm \:  =  \:[e -  {e}^{ - 1}] + [1 - ( - 1)] - \bigg[\dfrac{1}{3}  - \dfrac{ - 1}{3} \bigg]

\rm \:  =  \:[e -  {e}^{ - 1}] + [1 + 1] - \bigg[\dfrac{1}{3} + \dfrac{1}{3} \bigg]

\rm \:  =  \:[e -  {e}^{ - 1}] + [2] - \bigg[\dfrac{2}{3} \bigg]

\rm \:  =  \:[e -  {e}^{ - 1}] + 2 - \dfrac{2}{3}

\rm \:  =  \:[e -  {e}^{ - 1}] + \dfrac{6 - 2}{3}

\rm \:  =  \:e -  {e}^{ - 1}+ \dfrac{4}{3}

\rm \:  =  \:e -  \dfrac{1}{e} + \dfrac{4}{3}  \: square \: units

More to know :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Attachments:
Similar questions