Math, asked by Anonymous, 1 month ago


{ \boxed{ \bold \red{ \int( \frac{1}{x}  +  \frac{3x - 6}{ {x}^{2} } )dx}}}




❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​​​​​

Answers

Answered by Sahan677
17

 \bold \red{ \int{\left(\frac{1}{x} + \frac{3 x - 6}{x^{2}}\right)d x}}

Integrate term by term:

{\color{red}{\int{\left(\frac{1}{x} + \frac{3 x - 6}{x^{2}}\right)d x}} = \color{red}{\left(\int{\frac{1}{x} d x} + \int{\frac{3 x - 6}{x^{2}} d x}\right)}}

The integral of

 \bold \red{\frac{1}{x}  \: is \int{\frac{1}{x} d x} = \ln{\left(x \right)}}

 {\red{\int{\frac{3 x - 6}{x^{2}} d x} + \color{red}{\int{\frac{1}{x} d x}} = \int{\frac{3 x - 6}{x^{2}} d x} + \color{red}{\ln{\left(x \right)}}}}

Expand the expression:

{ \red{\ln{\left(x \right)} + \color{red}{\int{\frac{3 x - 6}{x^{2}} d x}} = \ln{\left(x \right)} + \color{red}{\int{\left(\frac{3}{x} - \frac{6}{x^{2}}\right)d x}}}}

Integrate term by term:

{ \red{\ln{\left(x \right)} + \color{red}{\int{\left(\frac{3}{x} - \frac{6}{x^{2}}\right)d x}} = \ln{\left(x \right)} + \color{red}{\left(- \int{\frac{6}{x^{2}} d x} + \int{\frac{3}{x} d x}\right)}}}

Apply the constant multiple rule

  \bold{\red{\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx \:  with \:  c=6  \: and \:  f{\left(x \right)} = \frac{1}{x^{2}}}}

 {\bold \red{\ln{\left(x \right)} + \int{\frac{3}{x} d x} - \color{red}{\int{\frac{6}{x^{2}} d x}} = \ln{\left(x \right)} + \int{\frac{3}{x} d x} - \color{red}{\left(6 \int{\frac{1}{x^{2}} d x}\right)}}}

Apply the power rule

 {\bold \red{\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}\left(n \neq -1 \right)  \: with \:  n=-2:}}

{ \bold \red{\ln{\left(x \right)} + \int{\frac{3}{x} d x} - 6 \color{red}{\int{\frac{1}{x^{2}} d x}}=\ln{\left(x \right)} + \int{\frac{3}{x} d x} - 6 \color{red}{\int{x^{-2} d x}}=\ln{\left(x \right)} + \int{\frac{3}{x} d x} - 6 \color{red}{\frac{x^{-2 + 1}}{-2 + 1}}=\ln{\left(x \right)} + \int{\frac{3}{x} d x} - 6 \color{red}{\left(- x^{-1}\right)}=\ln{\left(x \right)} + \int{\frac{3}{x} d x} - 6 \color{red}{\left(- \frac{1}{x}\right)}}}

Apply the constant multiple rule

  \bold \red{{\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx \:  with \:  c=3  \: and \:  f{\left(x \right)} = \frac{1}{x}:}}

{ \bold \red{\ln{\left(x \right)} + \color{red}{\int{\frac{3}{x} d x}} + \frac{6}{x} = \ln{\left(x \right)} + \color{red}{\left(3 \int{\frac{1}{x} d x}\right)} + \frac{6}{x}}}

The integral of

 \bold \red{\frac{1}{x} \:  is \int{\frac{1}{x} d x} = \ln{\left(x \right)}}

 {\bold \red{\ln{\left(x \right)} + 3 \color{red}{\int{\frac{1}{x} d x}} + \frac{6}{x} = \ln{\left(x \right)} + 3 \color{red}{\ln{\left(x \right)}} + \frac{6}{x}}}

Therefore,

 \bold \red{\int{\left(\frac{1}{x} + \frac{3 x - 6}{x^{2}}\right)d x} = 4 \ln{\left(\left|{x}\right| \right)} + \frac{6}{x}}

Add the constant of integration:

 \bold{ \red{\int{\left(\frac{1}{x} + \frac{3 x - 6}{x^{2}}\right)d x} = 4 \ln{\left(\left|{x}\right| \right)} + \frac{6}{x}+C}}

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int\sf \bigg[ \frac{1}{x} +  \dfrac{3x - 6}{ {x}^{2} } \bigg] \: dx

can be rewritten as

\rm \:  =  \:\displaystyle\int\sf \bigg[ \frac{1}{x} +  \dfrac{3x}{ {x}^{2} }  -  \frac{6}{ {x}^{2} } \bigg] \: dx

\rm \:  =  \:\displaystyle\int\sf \bigg[ \frac{1}{x} +  \dfrac{3}{x }  -  \frac{6}{ {x}^{2} } \bigg] \: dx

\rm \:  =  \:\displaystyle\int\sf \bigg[ \frac{4}{x}-  \frac{6}{ {x}^{2} } \bigg] \: dx

\rm \:  =  \: 4\displaystyle\int\sf  \frac{1}{x} \: dx \:  - 6\displaystyle\int\sf  {x}^{ - 2} \: dx

We know,

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\int\sf  \frac{1}{x} \: dx \:  =  \: logx \:  +  \: c \: }}}

and

\red{\rm :\longmapsto\:\boxed{ \tt{ \: \displaystyle\int\sf  {x}^{n}  \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  \:  +  \: c \: }}}

So using these results, we get

\rm \:  =  \: 4 \: log |x|  - 6 \times \dfrac{ {x}^{ - 2 + 1} }{ - 2 + 1}  + c

\rm \:  =  \: 4 \: log |x|  - 6 \times \dfrac{ {x}^{ - 1} }{ - 1}  + c

\rm \:  =  \: 4 \: log |x|  +  \dfrac{ 6}{x}  + c

Hence,

 \red{\boxed{ \tt{ \: \displaystyle\int\sf \bigg[ \frac{1}{x} +  \dfrac{3x - 6}{ {x}^{2} } \bigg] \: dx =  \: 4 \: log |x|  +  \dfrac{ 6}{x}  + c \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions