Math, asked by Anonymous, 1 day ago


{\boxed {\boxed {\bold \red{\frac{d}{dx} ({x}^{2})}}}}



❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​​​​

Answers

Answered by Sahan677
15

 \bold{ \frac{d}{dx} ( {x}^{2} )}

 \bold{ ={\displaystyle \lim_{ \bold{h \to0}}} \frac{(x + h) {}^{2} +  {x}^{2}  }{h}}

 \bold{ ={\displaystyle\lim_{ \bold{h \to0}}} \frac{ \cancel{ {x}^{2}}  + 2xh +  {h}^{2} -   \cancel{{x}^{2}}}{h}}

 \bold{ ={\displaystyle\lim_{ \bold{h \to0}}} \frac{ \cancel{h}(2xh )}{ \cancel{h}}}

 \bold{ = 2x}

Answered by OoAryanKingoO78
2

Answer:

 \bold{ \frac{d}{dx} ( {x}^{2} )}

 \bold{ ={\displaystyle \lim_{ \bold{h \to0}}} \frac{(x + h) {}^{2} +  {x}^{2}  }{h}}

 \bold{ ={\displaystyle\lim_{ \bold{h \to0}}} \frac{ \cancel{ {x}^{2}}  + 2xh +  {h}^{2} -   \cancel{{x}^{2}}}{h}}

 \bold{ ={\displaystyle\lim_{ \bold{h \to0}}} \frac{ \cancel{h}(2xh )}{ \cancel{h}}}

 \bold{ = 2x}

_______________________

Similar questions