Math, asked by rockstarharshith328, 9 months ago


check whether  (3/2)x + (5/3y)=7,9x-10y=12 is consistent or inconsistent.solve them graphically

Answers

Answered by pulakmath007
11

FORMULA TO BE IMPLEMENTED :

For A pair of Straight Lines

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

CONDITION FOR CONSISTENT

1. Coincident lines :

 \displaystyle \:  \:  \frac{a_1}{a_2}   = \frac{b_1}{b_2}=\frac{c_1}{c_2}

2. Intersecting lines :

 \displaystyle \:  \:  \frac{a_1}{a_2}   \ne \frac{b_1}{b_2}

3. Parallel lines ( Inconsistent) :

 \displaystyle \:  \:  \frac{a_1}{a_2}   = \frac{b_1}{b_2}</strong><strong> </strong><strong> </strong><strong>\</strong><strong>ne</strong><strong> </strong><strong>\frac{c_1}{c_2}

CALCULATION

Given pair of linear equations

 \displaystyle \:  \frac{3x}{2}  +  \frac{5y}{3}  = 7

9x + 10y = 42 - - - - - - - (1)

9x - 10y = 12 - - - - - - - - (2)

Comparing with

 \displaystyle \: a_1x+b_1y+c_1=0   \: and \:  \: a_2x+b_2y+c_2=0

We get

 \displaystyle \: a_1 = 9 \:   , \: b_1 =  10</p><p> \:    ,  c_1= - 42\: and \:  \: a_2 = 9 \:    ,  \:  b_2 = - 10\:  ,   \:  \: c_2= - 12

Now

 \displaystyle \:  \:  \frac{a_1}{a_2}   = \frac{9}{9} =1

 \displaystyle \:  \:  \frac{b_1}{b_2}  = \frac{10}{-10}=-1

 \displaystyle \:  \:  \frac{c_1}{c_2}  = \frac{-42}{-12}= \frac{7}{2 }

So

 \displaystyle \:  \:  \frac{a_1}{a_2}   \ne \frac{b_1}{b_2}

From above we can conclude that the given lines are intersecting

Hence the given lines are consistent

Graph : For graph refer to the attachment

Attachments:
Similar questions