Math, asked by sajan6491, 3 days ago

 \color{green}{\int_{0}^2 \begin{gathered}\rm  \sqrt{2}\bigg(\dfrac{1}{ \sqrt{2} } cosx + \frac{1}{ \sqrt{2} } sinx\bigg) \\ \end{gathered} \rm dx}

Answers

Answered by saichavan
23

\displaystyle  \sf\int_{0}^{2} \:  \sqrt{2} \bigg( \dfrac{1}{ \sqrt{2}  } \cos(x)  +  \frac{1}{ \sqrt{2} }  \sin(x)  \bigg)dx

 \displaystyle \sf \int \:  \sqrt{2}  \bigg( \frac{1}{ \sqrt{2}}  \times  \cos(x)  +  \frac{1}{ \sqrt{2} }  \times  \sin(x)  \bigg) \: dx

 \displaystyle  \sf \sqrt{2}  \times \int  \frac{1}{ \sqrt{2} } \times  \cos(x)   +  \frac{1}{ \sqrt{2} }  \times  \sin(x)  \: dx

 \displaystyle \sf  \sqrt{ 2} \times \int \:  \frac{ \cos(x) }{ \sqrt{2} } +  \frac{ \sin(x) }{ \sqrt{2} }  \: dx

Rationalize the denominator, by multiplying √2.

 \displaystyle \sf  \sqrt{2}  \times \int \: \frac{ \green{ \sqrt{2} } \cos(x) }{2}   +  \frac{  \green{\sqrt{2} } \sin(x) }{2}  \: dx

  \displaystyle \sf \:  \sqrt{2}  \times  \int \frac{ {2}^{ \frac{1}{2} }  \times  \cos(x) }{2}  +  \frac{ {2}^{ \frac{1}{2} } \times  \sin(x)  }{2}  \: dx

 \displaystyle \sf  \:  \sqrt{2}  \times \int \frac{ \cos(x) }{ {2}^{ \frac{1}{2} } }  +  \frac{ \sin(x) }{ {2}^{ \frac{1}{2} } }  \: dx

 \displaystyle \sf \sqrt{2}  \times  \int \:  \frac{ \cos(x)  +  \sin(x) }{ {2}^{ \frac{1}{2} } }  \: dx

 \displaystyle \sf 1 \times \int \:  \cos(x)  +  \sin(x)  \: dx

 \displaystyle \sf \int \:  \cos(x)  +  \sin(x)  \: dx

 \displaystyle \sf \int \:  \cos(x)  \: dx \:  +  \int \:   \sin(x)  \: dx

 \displaystyle \sf \:  \sin(x)  -  \cos(x)

 \sf \bigg( \sin(x)  -  \cos(x)  \bigg) \bigg|_{0}^{2}

 \sf \:  \sin(2)  -  \cos(2)  -  \bigg( \sin(0)  -  \cos(0)  \bigg)

 \green{ \sf \:  \sin(2)  -  \cos(2)  + 1}

Similar questions