Math, asked by sajan6491, 2 days ago

 \color{green} \rm{If  \: A= \begin{bmatrix}    \rm{1}&0&0\\  \rm{ i}&  \rm{\frac{ - 1 + i \sqrt{3} }{2}}&0 \\0& \rm{1 + 2i}&  \rm{\frac{ - 1 - i \sqrt{3} }{2}}\end{bmatrix}} \\  \color{blue} \rm{then \: the \: trace \: of \:A^{102} \: is }

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given matrix is

A= \begin{bmatrix} \rm{1}&0&0\\ \rm{ i}& \rm{\frac{ - 1 + i \sqrt{3} }{2}}&0 \\0& \rm{1 + 2i}& \rm{\frac{ - 1 - i \sqrt{3} }{2}}\end{bmatrix} \\

can be rewritten as

A= \begin{bmatrix} \rm{1}&0&0\\ \rm{ i}& \rm{ \omega }&0 \\0& \rm{1 + 2i}& \rm{ {\omega }^{2} }\end{bmatrix} \\

where,

\rm \: \omega  =  \frac{ - 1 +  \sqrt{3}i }{2}  \\

\rm \:  {\omega }^{2}   =  \frac{ - 1 -   \sqrt{3}i }{2}  \\

Let first find the eigen values of matrix A.

We know, to find eigen values of matrix A,

\rm \:  |A - kI|  = 0 \\

\rm \: \begin{gathered}\sf \left | \begin{array}{ccc}1 - k&0&0\\1&\omega  - k&0\\0&1 + 2i& {\omega  - k}^{2} \end{array}\right | \end{gathered} = 0 \\

\rm\implies \:(1 - k)(\omega  - k)( {\omega }^{2} - k) = 0 \\

\rm\implies \:k = 1, \: \omega , \:  {\omega }^{2}  \\

\rm\implies \: 1, \: \omega , \:  {\omega }^{2}   \: are \: eigen \: values \: of \: matrix \: A  \\

Now, we know that

\rm \: k_i \: are \: eigen \: values \: of \: matrix \: A

\rm\implies \: k_i^{n}  \: are \: eigen \: values \: of \: matrix \:  {A}^{n}  \\

So,

\rm\implies \: {1}^{102}, {\omega }^{102}, {\omega }^{204} \: are \: eigen \: values \: of \: matrix \:  {A}^{102}

\rm\implies \: 1, {( {\omega}^{3})}^{34}, {( {\omega }^{3} )}^{68} \: are \: eigen \: values \: of \: matrix \:  {A}^{102}

\rm\implies \: 1, 1, 1 \: are \: eigen \: values \: of \: matrix \:  {A}^{102}  \\

We know, trace of a matrix is sum of the eigen values.

\rm\implies \:tr( {A}^{102} ) = 1 + 1 + 1 = 3 \\

Similar questions