Math, asked by sajan6491, 4 days ago

  \color{purple}{ \prod \limits^{ \infty }_{n = 1} \bigg( \frac{25}{777} \bigg)^{ {( - 1)}^{n} \bigg( \frac{ tan^{4n} (x) + 1}{ tan ^{2n} (x) } \bigg) }}

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given expression is

\rm :\longmapsto\:\prod \limits^{ \infty }_{n = 1} \bigg( \dfrac{25}{777} \bigg)^{ {( - 1)}^{n} \bigg( \dfrac{ tan^{4n} (x) + 1}{ tan ^{2n} (x) } \bigg)}

can be rewritten as

\rm \:  =  \: \prod \limits^{ \infty }_{n = 1} \bigg( \dfrac{25}{777} \bigg)^{ {( - 1)}^{n} \bigg( \dfrac{ tan^{4n} (x)}{ tan ^{2n} (x)} + \dfrac{1}{ {tan}^{2n} (x)}  \bigg)}

\rm \:  =  \: \prod \limits^{ \infty }_{n = 1} \bigg( \dfrac{25}{777} \bigg)^{ {( - 1)}^{n} \bigg( {tan}^{2n}(x) +  {cot}^{2n}(x)  \bigg)}

can be further rewritten as

\rm \:  =  \: \prod \limits^{ \infty }_{n = 1} \bigg( \dfrac{25}{777} \bigg)^{ {( - 1)}^{n} \bigg( {( {tan}^{2}x) }^{n} +  {( {cot}^{2} x)}^{n}  \bigg)} \\

\rm \:  =  \: \prod \limits^{ \infty }_{n = 1} \bigg( \dfrac{25}{777} \bigg)^{\bigg( { {( - 1)}^{n} ( {tan}^{2}x) }^{n} +  {( - 1)}^{n}  {( {cot}^{2} x)}^{n}  \bigg)} \\

\rm \:  =  \: \prod \limits^{ \infty }_{n = 1} \bigg( \dfrac{25}{777} \bigg)^{ \bigg( {( { - tan}^{2}x) }^{n} +  {( { - cot}^{2} x)}^{n}  \bigg)} \\

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{ \bigg( {( { - tan}^{2}x) }^{1} +  {( { - cot}^{2} x)}^{1}  \bigg)}  \times \bigg( \dfrac{25}{777} \bigg)^{ \bigg( {( { - tan}^{2}x) }^{2} +  {( { - cot}^{2} x)}^{2}  \bigg)}  \times  \bigg( \dfrac{25}{777} \bigg)^{ \bigg( {( { - tan}^{2}x) }^{3} +  {( { - cot}^{2} x)}^{3}  \bigg)}   -  -  -   \\

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{ \bigg( -  {tan}^{2}x -  {cot}^{2}x +  {tan}^{4}x +  {cot}^{4}x - {tan}^{6}x - {cot}^{6}x +  -  -  \bigg)}

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{ \bigg(( -  {tan}^{2}x +  {tan}^{4}x  - {tan}^{6}x +  -  - ) + ( - {cot}^{2}x + {cot}^{4}x - {cot}^{6}x +  -  -)  \bigg)}   \\

Using Sum of infinite GP series,

 \purple{\rm :\longmapsto\:\boxed{\tt{ S_ \infty  \:  =  \:  \frac{a}{1 - r} \: where \:  |r|  < 1}}} \\

So, using this,

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{ \bigg(\dfrac{ - {tan}^{2}x}{1 + {tan}^{2}x}  + \dfrac{ - {cot}^{2}x}{1 + {cot}^{2}x}   \bigg)}   \\

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{ 1 +  {tan}^{2}x =  {sec}^{2}x}}} \\

and

 \purple{\rm :\longmapsto\:\boxed{\tt{ 1 +  {cot}^{2}x =  {cosec}^{2}x}}} \\

So, using this, we get

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{ \bigg(\dfrac{ - {tan}^{2}x}{{sec}^{2}x}  + \dfrac{ - {cot}^{2}x}{{cosec}^{2}x}   \bigg)}   \\

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{ \bigg(\dfrac{ - {sin}^{2}x}{{cos}^{2}x} \times  {cos}^{2}x   + \dfrac{ - {cos}^{2}x}{{sin}^{2}x} \times  {sin}^{2}x   \bigg)}   \\

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{\bigg( -  {sin}^{2}x -  {cos}^{2}x  \bigg)}   \\

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{\bigg( -({sin}^{2}x + {cos}^{2}x)  \bigg)}   \\

\rm \:  =  \: \bigg( \dfrac{25}{777} \bigg)^{\bigg( -1  \bigg)}   \\

\rm \:  =  \: \dfrac{777}{25}

Hence,

 \\ \purple{\rm :\longmapsto\:\boxed{\tt{ \prod \limits^{ \infty }_{n = 1} \bigg( \frac{25}{777} \bigg)^{ {( - 1)}^{n} \bigg( \frac{ tan^{4n} (x) + 1}{ tan ^{2n} (x) } \bigg)} =  \frac{777}{25} \: }}} \\

Similar questions