Math, asked by sidduluch27918, 10 months ago



 \cos(23 )  -  \sin(67)  \div   \tan(26)  \times  \tan(64)  =

Answers

Answered by amitnrw
1

Given :   {Cos(23°) - Sin(67°) }/ ( tan26 * tan64)

To Find  : Value

Solution:

{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)

tan26° * tan64°  = tan 26° * cot (90° - 64°)

= tan 26° * cot (26°)

=tan 26°/tan 26°

= 1

Sin(67°) = Cos(90° - 67°) = Cos(23°)

{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)

= ( Cos(23°) -  Cos(23°))/1

= 0/1

= 0

{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)  = 0

Learn More:

sin4x+sin3x+sin2x/cos4x+cos3x+cos2x

brainly.in/question/8661724

Prove that: (sin3x+sinx)sinx+(cos3x-cosx)

brainly.in/question/6631850

Answered by Anonymous
77

Answer :-

{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)

tan26° * tan64°  = tan 26° * cot (90° - 64°)

= tan 26° * cot (26°)

=tan 26°/tan 26°

= 1

Sin(67°) = Cos(90° - 67°) = Cos(23°)

{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)

= ( Cos(23°) -  Cos(23°))/1

= 0/1

= 0

{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)  = 0

Similar questions