Answers
Given : {Cos(23°) - Sin(67°) }/ ( tan26 * tan64)
To Find : Value
Solution:
{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)
tan26° * tan64° = tan 26° * cot (90° - 64°)
= tan 26° * cot (26°)
=tan 26°/tan 26°
= 1
Sin(67°) = Cos(90° - 67°) = Cos(23°)
{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)
= ( Cos(23°) - Cos(23°))/1
= 0/1
= 0
{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°) = 0
Learn More:
sin4x+sin3x+sin2x/cos4x+cos3x+cos2x
brainly.in/question/8661724
Prove that: (sin3x+sinx)sinx+(cos3x-cosx)
brainly.in/question/6631850
Answer :-
{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)
tan26° * tan64° = tan 26° * cot (90° - 64°)
= tan 26° * cot (26°)
=tan 26°/tan 26°
= 1
Sin(67°) = Cos(90° - 67°) = Cos(23°)
{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°)
= ( Cos(23°) - Cos(23°))/1
= 0/1
= 0
{Cos(23°) - Sin(67°) }/ ( tan26° * tan64°) = 0