Answers
Step-by-step explanation:
Given:-
Cos θ = √2/3 , 3π/2 ≤ θ ≤ 2π
To find:-
Find the values of Cosec θ and Cot θ ?
Solution:-
Given that Cos θ = √2/3
On squaring both sides
(Cos θ )^2 = (√2/3)^2
=>Cos^2 θ = 2/9
On subtracting from 1 both sides then
=>1 - Cos^2 θ = 1-(2/9)
=>1 - Cos^2 θ = (9-2)/9
=>1 - Cos^2 θ = 7/9
We know that
Sin^2 A + Cos^2 A = 1
=>Sin^2 θ = 7/9
=>Sin θ = √(7/9)
=>Sin θ = √7/3
We know that
1/ Sin θ = Cosec θ
Cosec θ = 1/(√7/3)
=>Cosec θ = 3/√7 ------(1)
(or)
=>Cosec θ = (3×√7)/(√7×√7)
=>Cosec θ = 3√7/7
On squaring (1) both sides
=>Cosec^2 θ = (3/√7)^2
=>Cosec^2 θ = 9/7
We know that
Cosec^2θ - Cot^2 θ = 1
=>Cot^2 θ = Cosec^2 θ - 1
=> Cot^2 θ = (9/7)-1
=>Cot^2 θ = (9-7)/7
=>Cot^2 θ = 2/7
=> Cot θ = √(2/7)
(or)
Cot θ = Cos θ/ Sin θ
=> Cot θ = (√2/3)/(√7/3)
=>Cot θ = (√2/3)×3/√7)
=>Cot θ = √2/√7
=>Cot θ =√(2/7)
Answer:-
Cosec θ =3/√7 or (3√7)/7
Cot θ = √(2/7)
Used formulae:-
- Sin^2 A + Cos^2 A = 1
- Cosec^2 A - Cot^2 A = 1
- Cosec A = 1/Sin A
- Cot A = Cos A / Sin A