=
Answers
Answered by
4
sin 2X = 2sinXcosx
So taking X=8A
sin 16A = 2cos8Asin8A
Taking X=4A
sin16A = 2cos8A(2cos4Asin4A)
Similarly, sin 4A=2cos2Asin2A
And sin2A=2sinAcosA
so sin 16A = 2*2*2*2 sinA cosA cos2A cos4A cos8A
sin 16A/sin A = 16 cosA cos 2A cos 4A cos 8A
So taking X=8A
sin 16A = 2cos8Asin8A
Taking X=4A
sin16A = 2cos8A(2cos4Asin4A)
Similarly, sin 4A=2cos2Asin2A
And sin2A=2sinAcosA
so sin 16A = 2*2*2*2 sinA cosA cos2A cos4A cos8A
sin 16A/sin A = 16 cosA cos 2A cos 4A cos 8A
Answered by
0
Answer:
CosAcos2Acos4Acos8A
=1/2sinA[(2sinAcosA)cos2Acos4Acos8A]
=1/2sinA(sin2Acos2Acos4Acos8A)
=1/4sinA[(2sin2Acos2A)cos4Acos8A]
=1/4sinA(sin4Acos4Acos8A)
=1/8sinA[(2sin4Acos4A)cos8A]
=1/8sinA(sin8Acos8A)
=1/16sinA(2sin8Acos8A)
=1/16sinA(sin16A)
=sin16A/16sinA (Proved)
Similar questions