Math, asked by khushidubey501, 10 months ago


cot \: a + cosec \: a - 1 \div cot \: a - cosec \: a + 1 = 1 + cos \: a \div sin \: a

Answers

Answered by ITzBrainlyGuy
2

ANSWER:

 { \rm{\frac{cot  \: a + cosec \: a - 1}{cot \: a - cosec \: a + 1} =  \frac{1 + cos \: a}{sin \: a}  }}

Taking LHS

We know that

cosec²A - cot²A = 1

Let us substitute 1 = cosec²A - cot²A

{ \rm{ \frac{cot \: a + cosec \: a - ( {cosec}^{2}a -  {cot}^{2}a)  }{cot \: a   -  cosec \: a \:  + 1} }}

Using

a² - b² = (a + b)(a - b)

 = { \rm{ \frac{cot \: a  + cosec \: a - [(cosec \: a + cot \: a)(cosec \: a-cot \: a)] }{cot \:  a \:   - cosec \: a + 1} }}

Taking common cotA + cosecA

 {\rm{ = \frac{(cosec \: a + cot \: a) \cancel{(1 - cosec \: a  +  \: cot \: a)}}{ \cancel{cot \: a  - cosec \: a + 1}}  }}

Using

cotA = cosA/sinA

cosecA = 1/sinA

{ \rm{ =  \frac{cos \: a}{sin \: a}  +  \frac{1}{sin \: a} =  \frac{1 + cos \: a}{sin \: a}  }}

LHS = RHS

Hence proved✓✓

Similar questions