Math, asked by Aquilla5, 5 hours ago


 \dag \underline\mathtt{question}
Find the area of a rhombus, each side of which measures 20 cm and one of whose diagonals is 24 cm.

 \pink{\dag} No copied answer✖​

Answers

Answered by dipanbabu7002
3

Answer:

384cm²

Step-by-step explanation:

The diagonals of a rhombus bisect at right angles

Consider Δ AOD

Using the Pythagoras theorem

AD2=OD2+AO2

By substituting the values

202=OD2+122

On further calculation

OD2=400−144

By subtraction

OD2=256

By taking out the square root

OD = 256

So we get

OD = 16cm

We know that BD = 2OD

So we get

BC = 2 (16) = 32cm

We know that

Area of rhombus ABCD = 21×AC×BD

By substituting the values

Area of rhombus ABCD = 21×24×32

On further calculation

Area of rhombus ABCD = 384cm2

Therefore, the area of rhombus ABCD is 384cm2.

Answered by kamalhajare543
17

Solution:-

  • The diagonals of a rhombus bisect at right angles

  • Consider Δ AOD

By Using A theorem:-

 \:  \:  \:  \:  \:  \sf \:  \:  \:  \:  \:  \:  \longrightarrow \: AD^2 =OD^2 +AO^2

By substituting the values:-

  \:  \:  \:  \:  \:  \:  \: \sf \:  \:  \:  \:  \longrightarrow \: 20^2 =OD^2 +12^2

On further calculation:-

  •  \:  \sf \:  \:  \:  \longrightarrow \: OD^2 =400−144

By subtraction

  •   \:  \:  \:  \longrightarrow\sf \: OD^2=256

By taking out the square root

  • OD = √256

So we get

  • OD = 16cm

We know that BD = 2OD

So we get

  • BC = 2× (16) = 32cm

We know that

 \sf \: Area  \: of \:  rhombus \:   \: ABCD = \dfrac{1}{2} ×AC×BD \\

By substituting the values

 \sf \: Area \:  of \:  rhombus \:  \:  ABCD = \frac{1}{2} ×24×32 \\

On further calculation

 \sf \:  \: Area  \: of  \: rhombus \:  \:  \red{ \bold{ ABCD = 384cm^2}}

   \sf \: \therefore \: \underline{ \underline{ \: the  \: area \:  of \:  rhombus \:  ABCD \:  is}} \sf \:  \:  \longrightarrow \:  \:      \underline{\boxed{\purple{\bold{384cm^2}}}}

Similar questions