Math, asked by PragyaTbia, 1 year ago

\dfrac{1 + \iota}{1 - \iota} - \dfrac{1 - \iota}{1 + \iota} का मापांक ज्ञात कीजिए l

Answers

Answered by hukam0685
0


\dfrac{1 + \iota}{1 - \iota} - \dfrac{1 - \iota}{1 + \iota} का मापांक ज्ञात कीजिए l

 \frac{1 + i}{1 - i} - \frac{1 - i}{1 + i} \\ \\ = > \frac{ {(1 + i)}^{2} - {(1 - i)}^{2} }{ {(1)}^{2} - {( i)}^{2} } \\ \\ = > \frac{1 + 2i + {i}^{2} - (1 - 2i + {i}^{2}) }{1 + 1} \\ \\ = > \frac{1 + 2i - 1 - 1 + 2i + 1}{2} \\ \\ = > \frac{4i}{2} \\ \\ = > 2i \\ \\ z = 0 + 2i \\ \\ |z| = \sqrt{ {0}^{2} + {2}^{2} } \\ \\ |z| = 2 \\ \\

\dfrac{1 + \iota}{1 - \iota} - \dfrac{1 - \iota}{1 + \iota} का मापांक 2 होगा|

Similar questions