Solve it Yaar !!!
Answers
♣ Qᴜᴇꜱᴛɪᴏɴ :
♣ ᴀɴꜱᴡᴇʀ :
♣ ᴄᴀʟᴄᴜʟᴀᴛɪᴏɴꜱ :
Adjust Fractions based on L.C.M
Least Common Multiplier of log
15
(3),log
405
(3):log
15
(3)log
405
(3)
Adjust Fractions based on L.C.M
\sf{=\dfrac{\dfrac{\ln \left(135\right)}{\ln \left(405\right)}}{\log _{15}\left(3\right)\log _{405}\left(3\right)}-\dfrac{\dfrac{\ln \left(5\right)}{\ln \left(15\right)}}{\log _{15}\left(3\right)\log _{405}\left(3\right)}}=
log
15
(3)log
405
(3)
ln(405)
ln(135)
−
log
15
(3)log
405
(3)
ln(15)
ln(5)
\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}Sincethedenominatorsareequal,combinethefractions:
c
a
±
c
b
=
c
a±b
\sf{=\dfrac{\dfrac{\ln \left(135\right)}{\ln \left(405\right)}-\dfrac{\ln \left(5\right)}{\ln \left(15\right)}}{\log _{15}\left(3\right)\log _{405}\left(3\right)}}=
log
15
(3)log
405
(3)
ln(405)
ln(135)
−
ln(15)
ln(5)
\text { Join } \dfrac{\ln (135)}{\ln (405)}-\dfrac{\ln (5)}{\ln (15)}: \quad \dfrac{\ln (15) \ln (135)-\ln (5) \ln (405)}{\ln (15) \ln (405)} Join
ln(405)
ln(135)
−
ln(15)
ln(5)
:
ln(15)ln(405)
ln(15)ln(135)−ln(5)ln(405)
=\dfrac{\dfrac{\ln \left(15\right)\ln \left(135\right)-\ln \left(5\right)\ln \left(405\right)}{\ln \left(15\right)\ln \left(405\right)}}{\log _{15}\left(3\right)\log _{405}\left(3\right)}=
log
15
(3)log
405
(3)
ln(15)ln(405)
ln(15)ln(135)−ln(5)ln(405)
=\dfrac{\ln \left(135\right)\ln \left(15\right)-\ln \left(5\right)\ln \left(405\right)}{\ln \left(15\right)\ln \left(405\right)\log _{15}\left(3\right)\log _{405}\left(3\right)}=
ln(15)ln(405)log
15
(3)log
405
(3)
ln(135)ln(15)−ln(5)ln(405)
\mathrm{Apply\:log\:rule}:\quad \log _a\left(b\right)=\dfrac{\ln \left(b\right)}{\ln \left(a\right)}Applylogrule:log
a
(b)=
ln(a)
ln(b)
\ln \left(15\right)\log _{15}\left(3\right)=\dfrac{\ln \left(15\right)}{\ln \left(e\right)}\cdot \dfrac{\ln \left(3\right)}{\ln \left(15\right)}ln(15)log
15
(3)=
ln(e)
ln(15)
⋅
ln(15)
ln(3)
=\dfrac{\ln \left(135\right)\ln \left(15\right)-\ln \left(5\right)\ln \left(405\right)}{\ln \left(405\right)\dfrac{\ln \left(15\right)}{\ln \left(e\right)}\cdot \dfrac{\ln \left(3\right)}{\ln \left(15\right)}\log _{405}\left(3\right)}=
ln(405)
ln(e)
ln(15)
⋅
ln(15)
ln(3)
log
405
(3)
ln(135)ln(15)−ln(5)ln(405)
=\dfrac{\ln \left(135\right)\ln \left(15\right)-\ln \left(5\right)\ln \left(405\right)}{\ln \left(405\right)\dfrac{\ln \left(3\right)}{\ln \left(e\right)}\log _{405}\left(3\right)}=
ln(405)
ln(e)
ln(3)
log
405
(3)
ln(135)ln(15)−ln(5)ln(405)
\mathrm{Apply\:log\:rule}:\quad \log _a\left(b\right)=\dfrac{\ln \left(b\right)}{\ln \left(a\right)}Applylogrule:log
a
(b)=
ln(a)
ln(b)
\ln \left(405\right)\log _{405}\left(3\right)=\dfrac{\ln \left(405\right)}{\ln \left(e\right)}\cdot \dfrac{\ln \left(3\right)}{\ln \left(405\right)}ln(405)log
405
(3)=
ln(e)
ln(405)
⋅
ln(405)
ln(3)
=\dfrac{\ln \left(135\right)\ln \left(15\right)-\ln \left(5\right)\ln \left(405\right)}{\dfrac{\ln \left(3\right)}{\ln \left(e\right)}\cdot \dfrac{\ln \left(405\right)}{\ln \left(e\right)}\cdot \dfrac{\ln \left(3\right)}{\ln \left(405\right)}}=
ln(e)
ln(3)
⋅
ln(e)
ln(405)
⋅
ln(405)
ln(3)
ln(135)ln(15)−ln(5)ln(405)
=\dfrac{\ln \left(135\right)\ln \left(15\right)-\ln \left(5\right)\ln \left(405\right)}{\dfrac{\ln \left(3\right)}{\ln \left(e\right)}\cdot \dfrac{\ln \left(3\right)}{\ln \left(e\right)}}=
ln(e)
ln(3)
⋅
ln(e)
ln(3)
ln(135)ln(15)−ln(5)ln(405)
\dfrac{\ln (3)}{\ln (e)}=\ln (3)
ln(e)
ln(3)
=ln(3)
=\dfrac{\ln \left(15\right)\ln \left(135\right)-\ln \left(5\right)\ln \left(405\right)}{\dfrac{\ln \left(3\right)}{\ln \left(e\right)}\ln \left(3\right)}=
ln(e)
ln(3)
ln(3)
ln(15)ln(135)−ln(5)ln(405)
=\dfrac{\ln \left(15\right)\ln \left(135\right)-\ln \left(5\right)\ln \left(405\right)}{\ln \left(3\right)\ln \left(3\right)}=
ln(3)ln(3)
ln(15)ln(135)−ln(5)ln(405)
\ln (3) \ln (3)=\ln ^{2}(3)ln(3)ln(3)=ln
2
(3)
=\dfrac{\ln \left(15\right)\ln \left(135\right)-\ln \left(5\right)\ln \left(405\right)}{\ln ^2\left(3\right)}=
ln
2
(3)
ln(15)ln(135)−ln(5)ln(405)
\huge\boxed{\sf{=3}}
=3