Math, asked by Anonymous, 5 hours ago

 \displaystyle \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \iint \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{dx \: dy}{ \sqrt{ {c}^{2}  + (x - y) {}^{2} }}\\ 0 \leq \: x \leq \: a \\ 0 \leq \: y \leq \: a

Answers

Answered by tname3345
4

Step-by-step explanation:

given :

  •  \displaystyle \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \iint \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \frac{dx \: dy}{ \sqrt{ {c}^{2} + (x - y) {}^{2} }}\\ 0 \leq \: x \leq \: a \\ 0 \leq \: y \leq \: a

to find :

  • frac{dx \: dy}{ \sqrt{ {c}^{2} + (x - y) {}^{2} }}\\ 0 \leq \: x \leq \: a \\ 0 \leq \: y \leq \: a[/tex]

concept :

inequality 0<x<y<1 indicates you can integrate ∫y0fdx first. What are the

correct limits on the outer dy integral

solution :

  • please check the attached file
Attachments:
Answered by Anonymous
5

\huge\red{Thank  \: You}

Attachments:
Similar questions