Math, asked by Anonymous, 14 hours ago

  \displaystyle\int  \sf\sqrt{ {x}^{3} \sqrt{ {x}^{4}  \sqrt{ {x}^{5} \sqrt{x...} }}} \: dx

Answers

Answered by IamIronMan0
98

Answer:

 \huge \pink{\frac{ {x}^{5} }{5}  + C}

Step-by-step explanation:

Let

f(x) = \sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}} \\ ....eq \: 1 \\ multiply \: both \: sides \: by \: x \\  \\ xf(x) = x\sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5}  \sqrt{x...} }}} \\  \\  = \sqrt{  {x}^{2} .{x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}} \\  \\  = \sqrt{ x.{x}^{3} \sqrt{  {x}^{2}. {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}} \\  \\  xf(x)= \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{6} \sqrt{x...} }}} \\ ....eq \: 2

Square equation 1

f {}^{2} (x) =  { {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}} \\  \\ from \: eq \: 2 \\  \\ f {}^{2} (x) =  {x}^{3} (xf(x)) \\  \\  \implies \: f {}^{2} (x)   =  {x}^{4} f(x) \\ \\  assuming \: f(x) \neq0 \\  \\ f(x) =  {x}^{4}

Integral

 \int \: f(x)dx =  \int {x}^{4} dx =  \frac{ {x}^{5} }{5}  + C

Answered by mathdude500
106

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle\int \sf\sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{6} ...} }}} \: dx

To evaluate this integral, Let first evaluate

\rm :\longmapsto\: \sf\sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{6} ...} }}}

Let assume that

\rm :\longmapsto\:y =  \sf\sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{6} ...} }}}

So, y should not be equal to zero.

can be rewritten on squaring as

\rm :\longmapsto\: {y}^{2}  =  \sf\ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{6} ...} }}----(1)

Now, Consider

\rm :\longmapsto\:y = \sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}}

So, can be rewritten as

\rm :\longmapsto\:xy = x\sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}}

\rm :\longmapsto\:xy = \sqrt{ {x}^{3}. {x}^{2}  \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}}

\rm :\longmapsto\:xy = \sqrt{ {x}^{4}.x \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}}

\rm :\longmapsto\:xy = \sqrt{ {x}^{4} \sqrt{ {x}^{4}. {x}^{2}  \sqrt{ {x}^{5} \sqrt{x...} }}}

\rm :\longmapsto\:xy = \sqrt{ {x}^{4} \sqrt{ {x}^{5}. x  \sqrt{ {x}^{5} \sqrt{x...} }}}

\rm :\longmapsto\:xy = \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{5}. {x}^{2}  \sqrt{x...} }}}

\rm :\longmapsto\:xy = \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{6}.x  \sqrt{x...} }}}

Continuing like this, we get

\rm :\longmapsto\:xy = \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{6} \sqrt{x...} }}} -  - (2)

On substituting the value of (2) in (1), we get

\rm :\longmapsto\: {y}^{2} =  {x}^{3}  \times xy

\rm :\longmapsto\: {y}^{2} = y {x}^{4}

\rm :\longmapsto\: y= {x}^{4}

\bf\implies \:\sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}} =  {x}^{4}

So,

\rm :\longmapsto\:\displaystyle\int \sf\sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{ {x}^{6} ...} }}} \: dx

\rm \:  =  \: \displaystyle\int  {x}^{4} \: dx

\rm \:  =  \: \dfrac{ {x}^{4 + 1} }{4 + 1}  + c

\rm \:  =  \: \dfrac{ {x}^{5} }{5}  + c

Hence,

 \red{\boxed{\tt{ \displaystyle\int \sf\sqrt{ {x}^{3} \sqrt{ {x}^{4} \sqrt{ {x}^{5} \sqrt{x...} }}} \: dx \:  =  \:  \frac{ {x}^{5} }{5} + c \: }}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}


amansharma264: Excellent
amitkumar44481: Great :-)
Similar questions