Math, asked by Jubain677, 1 month ago

\displaystyle L=\lim_{x\to0}(\sin x)^{\tan x} is equal to? ​

Answers

Answered by Anonymous
17

refer the above attachment

hope it helpful..

Attachments:
Answered by Anonymous
752

\: \: \: \: \:{\large{\pmb{\sf{\underline{ Here's \:  your \:  required \: solution!! }}}}}\\\\

\sf{ \displaystyle:\implies \red { L=\lim_{x\to0}(\sin x)^{\tan x}}}\\\\

Taking log both sides :-

\sf {\displaystyle:\implies\log L=\lim_{x\to0}\tan x\cdot\log(\sin x)}\\\\

\sf {\displaystyle:\implies\log L=\lim_{x\to0}\dfrac{\log(\sin x)}{\cot x}}\\\\

Applying L'hospital's Rule:-

\sf {\displaystyle:\implies\log L=\lim_{x\to0}\dfrac{\left(\dfrac{\cos x}{\sin x}\right)}{-\csc^2x}}\\\\

\sf {\displaystyle:\implies\log L=-\lim_{x\to0}\dfrac{\left(\dfrac{\sin x\cos x}{\sin^2x}\right)}{\left(\dfrac{1}{\sin^2x}\right)}}\\\\

\sf {\displaystyle:\implies\log L=-\lim_{x\to0}\sin x\cos x}\\\\

\sf \displaystyle:\implies\log L=-\dfrac{1}{2}\lim_{x\to0}\sin(2x)\\\\

\sf {\displaystyle:\implies\log L=-\dfrac{1}{2}\sin(2\times 0)}\\\\

\sf {\displaystyle:\implies\log L=0}\\\\

\sf {\displaystyle:\implies L=e^0}\\\\

\sf{ \displaystyle:\implies\red {\underline{L=1}}}\\\\

Similar questions