Math, asked by ItzArchimedes, 5 months ago

\displaystyle\maltese \underline{\underline{\textbf{\textsf{\pink{Question}}}}}
Find the derivative for \displaystyle\sf \dfrac{e^{^3\!/_2}}{x^2}

Note :-
• Spammed answers will be deleted on the spot !
• Answer only if you know .​

Answers

Answered by Anonymous
84

Solution:-

=> To find

  \to\sf \: Derivative \:  \: of \:  \:  \dfrac{ {e}^{ \frac{3}{2} } }{ {x}^{2} }

=> We can write as

 \sf \to \:  \dfrac{d  }{dx}  \:   \bigg(\dfrac{e {}^{ \frac{3}{2} } }{ {x}^{2} }  \bigg)

 \sf \to \:  \dfrac{d \:  }{dx}  ({e}^{ \frac{3}{2}  } \times  {x}^{ - 2})

We know that

 \sf \to \:  {e}^{ \frac{3}{2} }  \:  \: is \:  \: constant \:

We use this property

  \sf  \to\:  \dfrac{dax}{dx}  \: \:  \:  \:  \: where \: a \: is \: constant \:  \implies \:  a\dfrac{dx}{dx}

\sf \to \:  {e}^{ \frac{3}{2}}  \dfrac{d   {x}^{ - 2}  }{dx}

 \sf \to \:  {e}^{ \frac{3}{2} }  \times  - 2x {}^{ - 2 - 1}

\sf \to \:  {e}^{ \frac{3}{2} }  \times  - 2x {}^{  - 3}

We can write as

 \sf \to \:  \dfrac{ - 2 {e}^{  \frac{3}{2} } }{ {x}^{3} }

Answer is

 \sf \to \:  \dfrac{ - 2 {e}^{  \frac{3}{2} } }{ {x}^{3} }

Some property of differentiation

 \sf \to \:  \dfrac{d}{dx} (sinx) = cosx

 \sf \to \:  \dfrac{d}{dx} ( - cosx) = sinx

 \sf \to \:  \dfrac{d}{dx} (tanx) = sec {}^{2} x

 \sf \to \:  \dfrac{d}{dx} ( - cotx) = cosec {}^{2} x

 \sf \to \:  \dfrac{d}{dx} (secx) = secxtanx

 \sf \to \:  \dfrac{d}{dx}  {e}^{x}  =  {e}^{x}

 \sf \to \:  \dfrac{d}{dx} (log |x| ) =  \dfrac{1}{x}


ItzArchimedes: Thanks bro !
BrainIyMSDhoni: Superb :)
spacelover123: Amazing :D
Answered by RockingStarPratheek
425

\underline{\underline{\sf{ Derivative\:\:of \:\:}\sf{\displaystyle\frac{e^{\tfrac{3}{2}}}{x^2}}}}

We can also write it as :

\to\sf{\displaystyle \frac{d}{dx}\left(\frac{e^{\tfrac{3}{2}}}{x^2}\right)}

Take the Constant Out : (a × f)' = a × f'

\to\sf{\displaystyle e^{\tfrac{3}{2}}\frac{d}{dx}\left(\frac{1}{x^2}\right)}

Apply Exponent Rule : 1/a = a⁻¹

\to\sf{\displaystyle e^{\tfrac{3}{2}}\frac{d}{dx}\left(x^{-2}\right)}

Apply Power Rule : \sf{\displaystyle\frac{d}{dx}\left(x^a\right)=a\times  x^{a-1}}

\to\sf{\displaystyle e^{\tfrac{3}{2}}\left(-2x^{-2-1}\right)}

Simplify :

\to\sf{\displaystyle e^{\tfrac{3}{2}}\left(-2x^{-3}\right)}

\to\sf{\displaystyle -2e^{\tfrac{3}{2}}x^{-3}}

Apply Exponent Rule : a⁻ᵇ = 1/aᵇ

\to\sf{\displaystyle 2e^{\tfrac{3}{2}}\frac{1}{x^3}}

\to\sf{\displaystyle -\frac{1\cdot \:e^{\tfrac{3}{2}}\cdot \:2}{x^3}}

\boxed{\boxed{\to\sf{-\dfrac{2e^{\tfrac{3}{2}}}{x^3}}}}


ItzArchimedes: Thank you !
spacelover123: Great :D
Similar questions