Math, asked by sajan6491, 4 days ago

 \displaystyle  \rm \lim_{n \to \infty } \sum_{r = 0}^{n(b - a)} \frac{1}{na + r}

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Given expression is

\displaystyle \rm \lim_{n \to \infty } \sum_{r = 0}^{n(b - a)} \frac{1}{na + r}

can be rewritten as

\rm \: =  \:\displaystyle \rm \lim_{n \to \infty } \:  \frac{1}{na}  + \displaystyle \rm \lim_{n \to \infty } \sum_{r = 1}^{n(b - a)} \frac{1}{na + r}

\rm \: =  \:0 + \displaystyle \rm \lim_{n \to \infty } \sum_{r = 1}^{n(b - a)} \frac{1}{na + r}

\rm \:=  \: \displaystyle \rm \lim_{n \to \infty } \sum_{r = 1}^{n(b - a)} \frac{1}{na + r}

can be further rewritten as

\rm \: =  \:\displaystyle \rm \lim_{n \to \infty } \sum_{r = 1}^{n(b - a)} \frac{1}{n\bigg(a +  \dfrac{r}{n}\bigg) }

can be further rewritten as

\rm \: =  \:\displaystyle \rm \lim_{n \to \infty } \:  \frac{1}{n} \:   \sum_{r = 1}^{n(b - a)} \frac{1}{a +  \dfrac{r}{n} }

Now, using Limit as a Sum of Definite integrals, we have

\rm :\longmapsto\:\dfrac{r}{n} \: changes \: to \: x \\

\rm :\longmapsto\:\dfrac{1}{n} \: changes \: to \: dx \\

\rm :\longmapsto\:\displaystyle \sf \lim_{n \to \infty} \sum \: changes \: to \: \int

\rm :\longmapsto\: \: lower \: limit \: a \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{1}{n} = 0

\rm :\longmapsto\: \: upper \: limit \: b \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{n(b - a)}{n} = \: b - a \\

So, given expression can be rewritten as

\rm \: =  \:\displaystyle\int_0^{b-a}\rm  \:  \frac{1}{a + x} \: dx \:  \\

\rm \: =  \:\bigg[log |x + a|\bigg] _0^{b-a} \\

\rm \: =  \:log |b - a + a| - log |a + 0|  \\

\rm \: =  \:logb \:  -  \: loga \\

\rm \: =  \:log\bigg |\dfrac{b}{a} \bigg|  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \: \displaystyle \rm \lim_{n \to \infty } \sum_{r = 0}^{n(b - a)} \frac{1}{na + r}=  \:log\bigg |\dfrac{b}{a} \bigg|  \:  \: }} \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions