Math, asked by sajan6491, 20 days ago

 \displaystyle  \rm \red{\lim_{n \to \infty } \sum_{k = 1}^{n}  \bigg( 5 +  \frac{3k}{n} \bigg) \frac{3}{n} }

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

Given expression is

\displaystyle\rm {\lim_{n \to \infty } \sum_{k = 1}^{n} \bigg( 5 + \frac{3k}{n} \bigg) \frac{3}{n} } \\

can be rewritten as

\rm \: =  \: 3\displaystyle\rm {\lim_{n \to \infty } \sum_{k = 1}^{n} \bigg( 5 + \frac{3k}{n} \bigg) \frac{1}{n} } \\

Now, using Limit as sum of definite integrals

\rm \: \dfrac{1}{n} \: changes \: to \: dx \\

\rm \: \dfrac{k}{n} \: changes \: to \: x \\

\rm \: \displaystyle \sf \lim_{n \to \infty} \sum \: changes \: to \: \int \\

\rm \: lower \: limit \: a \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{1}{n} = 0 \\

\rm \: \: upper \: limit \: b \: = \: \displaystyle \sf \lim_{n \to \infty}\frac{n}{n} = \: 1 \\

So, above expression can be rewritten as

\rm \: =  \: 3\displaystyle\int_0^1\rm (5 + 3x) \: dx \\

\rm \: =  \: 3\bigg[5x + \dfrac{ {3x}^{2} }{2} \bigg]_0^1 \\

\rm \: =  \: 3\bigg[5 + \dfrac{3}{2} - 0 - 0 \bigg] \\

\rm \: =  \: 3\bigg[\dfrac{10 + 3}{2} \bigg] \\

\rm \: =  \: 3\bigg[\dfrac{13}{2} \bigg] \\

\rm \: =  \: \dfrac{39}{2}  \\

Thus,

\rm\implies \:\boxed{\sf{  \:\displaystyle \rm {\lim_{n \to \infty } \sum_{k = 1}^{n} \bigg( 5 + \frac{3k}{n} \bigg) \frac{3}{n} }\rm \: =  \: \dfrac{39}{2}  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used :-

\boxed{\sf{  \:\displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1}  + c \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions