Math, asked by sajan6491, 19 days ago

 \displaystyle  \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}} \int_{ 0 }^{{y - z}^{}} (2x - y) \: dxdydz

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}} \int_{ 0 }^{{y - z}^{}} (2x - y) \: dxdydz

Since, in the first integral, the limits are free from variable x, so we have to first integrate with respect to x.

So,

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}} \bigg(\int_{ 0 }^{{y - z}^{}} (2x - y) \: dx\bigg)dydz

We know,

\rm :\longmapsto\:\boxed{\tt{  \:  \: \displaystyle \sf\int \:  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \:  \: }}

and

\rm :\longmapsto\:\boxed{\tt{  \:  \: \displaystyle \sf\int \:  k \: dx \:  =  \:  kx + c \:  \: }}

So, using these Identities, we get

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}}\bigg[ {x}^{2} - xy \bigg]_{0}^{y - z} \:dydz

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}}\bigg[ {(y - z)}^{2} - y(y - z) \bigg]\: dydz

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}}\bigg[ {y}^{2} +  {z}^{2} - 2yz  -  {y}^{2} + yz \bigg]\: dydz

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}}\bigg[{z}^{2} -yz  \bigg]\: dydz

Now, the inner integral is free from variable y, so we have to integrate with respect to y, we get

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \bigg[{z}^{2}y -z \frac{ {y}^{2} }{2}   \bigg]_{0}^{ {z}^{2} }\:dz

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \bigg[{z}^{4} -\frac{ {z}^{5} }{2}   \bigg] \:dz

\rm \:  =  \: \bigg[\dfrac{ {z}^{5} }{5} - \dfrac{ {z}^{6} }{12}  \bigg]_{0}^{2}

\rm \:  =  \: \dfrac{32}{5}  - \dfrac{64}{12}

\rm \:  =  \: \dfrac{32}{5}  - \dfrac{32}{6}

\rm \:  =  \:32 \bigg[\dfrac{1}{5}  - \dfrac{1}{6} \bigg]

\rm \:  =  \:32 \bigg[\dfrac{6 - 5}{30} \bigg]

\rm \:  =  \:16 \bigg[\dfrac{1}{15} \bigg]

\rm \:  =  \: \dfrac{16}{15}

Hence,

 \purple{\rm\implies \:\boxed{\tt{ \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}} \int_{ 0 }^{{y - z}^{}} (2x - y) \: dxdydz =  \frac{16}{15}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Answered by OoAryanKingoO78
4

Answer:

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}} \int_{ 0 }^{{y - z}^{}} (2x - y) \: dxdydz

Since, in the first integral, the limits are free from variable x, so we have to first integrate with respect to x.

So,

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}} \bigg(\int_{ 0 }^{{y - z}^{}} (2x - y) \: dx\bigg)dydz

We know,

\rm :\longmapsto\:\boxed{\tt{  \:  \: \displaystyle \sf\int \:  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c \:  \: }}

and

\rm :\longmapsto\:\boxed{\tt{  \:  \: \displaystyle \sf\int \:  k \: dx \:  =  \:  kx + c \:  \: }}

So, using these Identities, we get

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}}\bigg[ {x}^{2} - xy \bigg]_{0}^{y - z} \:dydz

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}}\bigg[ {(y - z)}^{2} - y(y - z) \bigg]\: dydz

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}}\bigg[ {y}^{2} +  {z}^{2} - 2yz  -  {y}^{2} + yz \bigg]\: dydz

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}}\bigg[{z}^{2} -yz  \bigg]\: dydz

Now, the inner integral is free from variable y, so we have to integrate with respect to y, we get

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \bigg[{z}^{2}y -z \frac{ {y}^{2} }{2}   \bigg]_{0}^{ {z}^{2} }\:dz

\rm \:  =  \: \displaystyle \sf\int_{0}^{2} \bigg[{z}^{4} -\frac{ {z}^{5} }{2}   \bigg] \:dz

\rm \:  =  \: \bigg[\dfrac{ {z}^{5} }{5} - \dfrac{ {z}^{6} }{12}  \bigg]_{0}^{2}

\rm \:  =  \: \dfrac{32}{5}  - \dfrac{64}{12}

\rm \:  =  \: \dfrac{32}{5}  - \dfrac{32}{6}

\rm \:  =  \:32 \bigg[\dfrac{1}{5}  - \dfrac{1}{6} \bigg]

\rm \:  =  \:32 \bigg[\dfrac{6 - 5}{30} \bigg]

\rm \:  =  \:16 \bigg[\dfrac{1}{15} \bigg]

\rm \:  =  \: \dfrac{16}{15}

Hence,

 \pink{\rm\implies \:\boxed{\tt{ \displaystyle \sf\int_{0}^{2} \int_{ 0 }^{{z}^{2}} \int_{ 0 }^{{y - z}^{}} (2x - y) \: dxdydz =  \frac{16}{15}}}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

ADDITIONAL INFORMATION

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions
Math, 19 days ago