Math, asked by Anonymous, 27 days ago

 \displaystyle  \sf \int_{0}^{ \infty}  \frac{ \arctan(x) - \arctan(2x) + \arctan(3x) - \arctan(4x)}{x}  \: dx

Answers

Answered by Dnyanesshwari
0

Answer:

Because

arctan(−2)+arctan(−3)=−135∘<0

By the way, tan(−135∘)=1.

please make as Brainleast

Answered by sajan6491
3

 \tiny \displaystyle \sf \int_{0}^{ \infty} \frac{ \arctan(x) - \arctan(2x) + \arctan(3x) - \arctan(4x)}{x} \: dx

 \tiny \displaystyle \sf \int_{0}^{ \infty} \frac{ \arctan(x) - \arctan(2x)}{x} \: dx + \int_{0}^{ \infty} \frac{ \arctan(3x)   -  \arctan(4x)  }{x}  \: dx

\sf \frac{\pi}{2}   \ln  \frac{1}{2}  +  \frac{\pi}{2}   \ln  \frac{3}{4}

 \frac{\pi}{2}   \ln \frac{3}{8}

Similar questions