Math, asked by Anonymous, 5 hours ago

 \displaystyle \sf   \int_{0}^{ ln2 }  \frac{ {e}^{x}  -  {e}^{2x} +  {e}^{3x} -  {e}^{4x} +  {e}^{5x} -  {e}^{6x}   +  {e}^{7x}   -  {e}^{8x}   }{1 +  {e}^{x} +  {e}^{2x}   +  {e}^{3x} +  {e}^{4x}  +  {e}^{5x}   +  {e}^{6x}  +  {e}^{7x} }

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given integral is

\rm :\longmapsto\:\displaystyle \sf \int_{0}^{ ln2 } \frac{ {e}^{x} - {e}^{2x} + {e}^{3x} - {e}^{4x} + {e}^{5x} - {e}^{6x} + {e}^{7x} - {e}^{8x} }{1 + {e}^{x} + {e}^{2x} + {e}^{3x} + {e}^{4x} + {e}^{5x} + {e}^{6x} + {e}^{7x} }dx

can be rewritten as

\rm \:  =  \: \displaystyle \sf \int_{0}^{ ln2 } \frac{ ({e}^{x} + {e}^{3x} + {e}^{5x}  + {e}^{7x}) - ({e}^{2x} +  {e}^{4x} + {e}^{6x} + {e}^{8x} )}{(1 + {e}^{2x} + {e}^{4x} + {e}^{6x}) + ({e}^{x} + {e}^{3x} + {e}^{5x} + {e}^{7x} )}dx

\rm \:  =  \: \displaystyle \sf \int_{0}^{ ln2 } \frac{ {e}^{x}(1 + {e}^{2x} + {e}^{4x}+ {e}^{6x}) - {e}^{2x}(1 +  {e}^{2x} + {e}^{4x} + {e}^{6x} )}{(1 + {e}^{2x} + {e}^{4x} + {e}^{6x}) + {e}^{x}(1 + {e}^{2x} + {e}^{4x} + {e}^{6x} )}dx

\rm \:  =  \: \displaystyle \sf \int_{0}^{ ln2 } \frac{({e}^{x}- {e}^{2x})(1 +  {e}^{2x} + {e}^{4x} + {e}^{6x} )}{(1 + {e}^{2x} + {e}^{4x} + {e}^{6x})(1 + {e}^{x})}dx

\rm \:  =  \: \displaystyle \sf \int_{0}^{ ln2 } \frac{{e}^{x}- {e}^{2x}}{1 + {e}^{x}}dx

\rm \:  =  \: \displaystyle \sf \int_{0}^{ ln2 } \frac{{e}^{x}(1- {e}^{x})}{1 + {e}^{x}}dx

can be further rewritten as

\rm \:  =  \: \displaystyle \sf \int_{0}^{ ln2 } \frac{(1- {e}^{x})}{1 + {e}^{x}}{e}^{x} \: dx

To evaluate this integral, we use method of Substitution

So, Substitute

 \red{\rm :\longmapsto\:{e}^{x} = y}

 \red{\rm :\longmapsto\:{e}^{x}dx = dy}

We know,

In definite integrals, when we substitute, we have to change the limits too.

So,

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y = {e}^{x} \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf 0 & \sf 1 \\ \\ \sf ln2 & \sf 2 \end{array}} \\ \end{gathered}

So, above integral, can be rewritten as

\rm \:  =  \: \displaystyle \sf \int_{1}^{ 2 } \frac{1 - y}{1 + y} \: dy

\rm \:  =  \: -  \:  \displaystyle \sf \int_{1}^{ 2 } \frac{y - 1}{y + 1} \: dy

\rm \:  =  \: -  \:  \displaystyle \sf \int_{1}^{ 2 } \frac{y  + 1 - 1- 1}{y + 1} \: dy

\rm \:  =  \: -  \:  \displaystyle \sf \int_{1}^{ 2 } \frac{y  + 1 - 2}{y + 1} \: dy

\rm \:  =  \: -  \:  \displaystyle \sf \int_{1}^{ 2 } \bigg(\frac{y  + 1}{y + 1}  -  \frac{2}{y + 1} \bigg)\: dy

\rm \:  =  \: -  \:  \displaystyle \sf \int_{1}^{ 2 } \bigg(1  -  \frac{2}{y + 1} \bigg)\: dy

\rm \:  =  \: -  \:  \bigg[y - 2log |1 + y|  \bigg]_{1}^{ 2 }

\rm \:  =  \: -  \:  \bigg[2 - 2log |1 + 2|  - 1 + 2log |1 + 1|  \bigg]

\rm \:  =  \: -  \:  \bigg[1 - 2log |3| + 2log |2|  \bigg]

\rm \:  =  \: 2log3 - 2log2 - 1

Hence,

\displaystyle \sf \int_{0}^{ ln2 } \frac{ {e}^{x} - {e}^{2x} + {e}^{3x} - {e}^{4x} + {e}^{5x} - {e}^{6x} + {e}^{7x} - {e}^{8x} }{1 + {e}^{x} + {e}^{2x} + {e}^{3x} + {e}^{4x} + {e}^{5x} + {e}^{6x} + {e}^{7x} } dx \\ \\ \bf \:  =  \: 2log3 - 2log2 - 1

Answered by tname3345
4

Step-by-step explanation:

given :

  •  \displaystyle \sf \int_{0}^{ ln2 } \frac{ {e}^{x} - {e}^{2x} + {e}^{3x} - {e}^{4x} + {e}^{5x} - {e}^{6x} + {e}^{7x} - {e}^{8x} }{1 + {e}^{x} + {e}^{2x} + {e}^{3x} + {e}</li></ul><p></p><p></p><h2>to find :</h2><p></p><h3>\int_{0}^{ ln2 } \frac{ {e}^{x} - {e}^{2x} + {e}^{3x} - {e}^{4x} + {e}^{5x} - {e}^{6x} + {e}^{7x} - {e}^{8x} }{1 + {e}^{x} + {e}^{2x} + {e}^{3x} + {e}^{4x} + {e}^{5x} + {e}^{6x} + {e}^{7x} }

    solution :

    • please check the attached file
Attachments:
Similar questions