Math, asked by sajan6491, 15 hours ago

 \displaystyle  \sf\lim_{x \to 0 } \frac{1 -  \prod \limits_{k = 2}^{n}  \sqrt[k]{cos(kx)} }{ {x}^{2} }  = 10

Answers

Answered by keerthanakrishna59
12

First, let's note that for x∈(0,2π)x∈(0,2π)

∑k=1nsinkxk=∫x0∑k=1ncoskt dt=−x2+∫x0sin(2n+1)t22sint2 dt∑k=1nsin⁡kxk=∫0x∑k=1ncos⁡kt dt=−x2+∫0xsin⁡(2n+1)t22sin⁡t2 dt

=−x2+∫x0(12sint2−1t)sin(2n+1)t2 dt+∫

hope it helps you

mark as brainest and follow

Answered by IamIronMan0
58

Answer:

 \huge \purple{n = 6}

Attachments:
Similar questions