Math, asked by BendingReality, 8 months ago

\displaystyle \text{Let :}\\ \\\displaystyle f(x)=\int {\dfrac{dx}{e^x+8e^{-x}+4e^{-3x}}} \\ \\ \\\displaystyle \text{And} \\ \\\displaystyle g(x)=\int {\dfrac{dx}{e^{3x}+8e^{x}+4e^{-x}}} \\ \\ \\\displaystyle \text{Then find value of :} \\ \\\displaystyle \int {(f(x)-2g(x))dx} \, \quad \text{And} \\ \\ \\\displaystyle \int {(f(x)+2g(x))dx}

Answers

Answered by Anonymous
39

AnswEr :

Given that.

\displaystyle  f(x)=\int {\dfrac{dx}{e^x+8e^{-x}+4e^{-3x}}}

and,

 \displaystyle g(x)=\int {\dfrac{dx}{e^{3x}+8e^{x}+4e^{-x}}}

To perform mathematical operations on f(x) and g(x), they should have the same denominator.

Multiplying & Dividing f(x) by e^2x,

 \longrightarrow \: \displaystyle  f(x)=\int {\dfrac{e {}^{2x} dx}{e^{3x}+8e^{x}+4e^{-x}}}

Now,

 \longrightarrow \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{e {}^{2x} dx}{e^{3x}+8e^{x}+4e^{-x}}} -  \int {\dfrac{dx}{e^{3x}+8e^{x}+4e^{-x}}} \\  \\  \longrightarrow \ \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{(e {}^{2x} - 2) dx}{e^{3x}+8e^{x}+4e^{-x}}}

Multiplying & Dividing by e^x,

  \longrightarrow \ \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{ {e}^{x} (e {}^{2x} - 2) dx}{e^{4x}+8e^{2x}+4} }

Let's assume t = e^x

Differentiating on both sides w.r.t x,

dx =  \dfrac{dt}{e {}^{x} }

Thus,

  \longrightarrow \ \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{ {e}^{x} (t{}^{2} - 2)}{t^{4}+8t^{2}+4} } \times  \dfrac{dt}{ {e}^{x} }

Dividing Numerator and Denominator by t²,

  \longrightarrow \ \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg)=\int {\dfrac{  (1 -   \dfrac{2}{ {t}^{2} } )dt}{t^{2}+8+ \dfrac{4}{ {t}^{2} } } }

Consider t² + 8 + 4/t².

It can be rewritten as (t + 2/t)² + 4 = (t + 2/t)² + 2

  \longrightarrow \ \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg)=\int \dfrac{  (1 -   \dfrac{2}{ {t}^{2} } )dt}{(t +  \dfrac{2}{t} ) {}^{2} +  {2}^{2}  }

Here,

If y = t + 2/t and differentiating w.r.t t,

 \implies dy = ( 1 - \dfrac{2}{t {}^{2} } )dt

Therefore,

  \longrightarrow \ \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg)=\int  \dfrac{dy}{ {y}^{2}  +  {2}^{2} }

Of the form,

 \boxed{ \boxed{ \sf  \displaystyle \int \dfrac{dx}{ {x}^{2}  +  {a}^{2} }  =  \dfrac{1}{a}tan {}^{ - 1}( \dfrac{x}{a} )  }}

Further,

  \longrightarrow \ \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg) =  \dfrac{1}{2}  {tan}^{ - 1}  \bigg( \dfrac{y}{2}  \bigg) \\  \\  \longrightarrow \ \: \displaystyle  \int \bigg( f(x) - 2g(x) \bigg) =  \dfrac{1}{2}  {tan}^{ - 1}  \bigg( \dfrac{t {}^{2}  + 2}{2t}  \bigg) \\  \\   \longrightarrow \ \boxed{ \boxed{\displaystyle  \int \bigg( f(x) - 2g(x) \bigg) =  \dfrac{1}{2}  {tan}^{ - 1}  \bigg( \dfrac{ {e}^{2x} + 2 }{2 {e}^{x} }  \bigg)}}


Equestriadash: Well explained!!
Anonymous: Thank you! ♥️
BloomingBud: cool !
Anonymous: Thank you! ♥️
amitkumar44481: Great bro :-)
Anonymous: Thank you!
Similar questions