Math, asked by AnanyaBaalveer, 2 days ago


f\frac{ \sqrt{x} }{ \sqrt{ {a}^{3 -  {x}^{3} } } } dx
Only moderators and great users​

Answers

Answered by talpadadilip417
2

Step-by-step explanation:

\\ \text{ did \: you \: mean :  - }\\  \tt \int\frac{ \sqrt{x} }{ \sqrt{ {a}^{3 }  - {x}^{3} } } dx

\\ \rule{300pt}{1pt}

To evaluate: \\ \int \frac{\sqrt{x}}{\sqrt{a^{3}-x^{3}}} d x

 \\   \displaystyle  \tt\[ \int \frac{\sqrt{x}}{\sqrt{\left(a^{\frac{3}{2}}\right)^{2}-\left(x^{\frac{3}{2}}\right)^{2}}} d x \ldots (1)\]

 \text{Put \( \tt x^{\frac{3}{2}}=t \)}

 \\  \tt \[ \Rightarrow \frac{3}{2} x ^{\dfrac{1}{2}} dx = dt \]

Therefore (1) becomes

\[ \begin{array}{l} \displaystyle \tt \frac{2}{3} \int \frac{d t}{\sqrt{\left(a^{\frac{3}{2}}\right)^{2}-t^{2}}} \\ \\\displaystyle  \tt \Rightarrow \frac{2}{3} \sin ^{-1}\left(\frac{t}{a^{\frac{3}{2}}}\right)+C \\  \\ \displaystyle \tt\Rightarrow \frac{2}{3} \sin ^{-1}\left(\frac{x ^ \frac{3}{2}}{x ^ \frac{3}{2}}\right)+C \\ \\  \displaystyle\tt \Rightarrow \frac{2}{3} \sin ^{-1} \sqrt{\frac{x^{3}}{a^{3}}}+C \end{array} \]

Similar questions