Math, asked by pradhatmedhi1977, 9 months ago


f (x)  =  {2x}^{2}  + 5x + k  \: polynomials \: zeros \: are \: \:  \alpha \:  and \\  \beta  \: and \: it \: proves \:  \alpha { }^{2}  +  \beta  {}^{2}  +  \alpha  \beta  =  \frac{21}{4}  \: than \: find \: the \\ possible \: value \: of \:  \ \:  \:  \: k \: \\  \\  \\  \\  \\  \\  \\  \\  \\  \\

Answers

Answered by rumig0720
4

f(x) = 2 {x}^{2}  + 5x + k  \\ there \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: b = 5 \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  c = k\:  \:    \\ the \:  \:  \: zeroes \:  \:  \: are \:  \:  \alpha  \:  \: and \ \:  \beta  \\ so \:  \:  \:  \:  \alpha  +  \beta  =  \frac{ - b}{a }   = \frac{ - 5}{2}  \\ and \:  \:  \\  \:  \:  \:  \:  { \alpha }^{2}  +  { \beta }^{2}  +  \alpha  \beta  =   \frac{21}{4}  \\  = >   {( \alpha  +  \beta )}^{2}  -  \alpha  \beta  =  \frac{21}{4}  \\  =  >   {( \frac{ - 5}{2} )}^{2}  -  \alpha  \beta  =  \frac{ 21}{4}  \\  =  >  \frac{25}{4}  -  \alpha  \beta  =  \frac{21}{4}  \\  =  >  \alpha  \beta  =  \frac{25}{4}  -  \frac{21}{4}  \\  =  >  \alpha  \beta  =  \frac{25 - 21}{4}  \\  =  >  \alpha  \beta  =  \frac{4}{4}  \\  = >  \alpha  \beta  = 1 \\  \\ we \:  \: know \:  \: that \:  \:  \\  \:  \:  \: 2 {x}^{2}  + 5x + k  \\  = {x}^{2}  - ( \alpha  +  \beta )x  +  \alpha  \beta  \\  =  {x}^{2}  - ( -  \frac{5}{2} )x +  1 \\  =  {x}^{2}  +  \frac{5}{2} x + 1 \\ =  2 {x}^{2}  + 5x + 1 \\ so \:  \\  \:  \: 2 {x}^{2}  + 5x + k  =  2 {x}^{2}  + 5x + 1  \\ then \:  \:  \:  \:  \:  \:  \:  \: k = 1

Similar questions