Math, asked by SHZ123, 7 days ago


f(x) =  \frac{1}{1 + x}
হলে,
f(f(f(x)))
নির্ণয় কর।​

Answers

Answered by TrustedAnswerer19
40

Answer:

 \bf \: given \\  \red{ \sf \: f(x) }=  \frac{1}{ 1 + x}  \\  \\   \bigstar \: \sf \: \orange{ f( \pink{f( \red{f(x)})}) }=  \: to \: find \:  \\  \\  \bf \: at \:  \: first \:  \\  \pink{f( \red{f(x)})}  =  \frac{1}{1 + \red{f(x)} }  \\  \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1}{1 +  \frac{1}{1  +  x} }  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1}{ \frac{1 + x + 1}{x + 1} }  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1 + x}{2 + x}  \\  \\  \bf \: now \\   \bigstar \: \sf \: \orange{ f( \pink{f( \red{f(x)})}) } =  \orange{f( \frac{1 + x}{2 + x} )} \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:   =  \frac{1}{1 +  \frac{1 + x}{ 2+ x} }  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{1}{ \frac{2 + x + 1 + x}{2 + x} }  \\ \sf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  =  \frac{2 +x}{3 + 2x}  \\  \\  \therefore \:    \: \sf \: \orange{ f( \pink{f( \red{f(x)})}) } =  \frac{2 + x}{3 + 2x}

Step-by-step explanation:

Assalamu A'laikum, good evening

Hope you are fine.

Thanks for reporting the irrelevant answer of one user who answered my question.

And good luck for your exam...

Answered by mathdude500
38

\large\underline{\sf{Given- }}

\rm :\longmapsto\:f(x) = \dfrac{1}{1 + x}

\large\underline{\sf{To\:Find - }}

\rm :\longmapsto\:f(f(f(x)))

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:f(x) = \dfrac{1}{1 + x}

So,

\rm :\longmapsto\:f(f(x)) = \dfrac{1}{1 + f(x)}

\rm :\longmapsto\:f(f(x)) = \dfrac{1}{1 + \dfrac{1}{1 + x} }

\rm :\longmapsto\:f(f(x)) = \dfrac{1}{ \:  \: \dfrac{1 + x + 1}{1 + x}  \:  \: }

\rm :\longmapsto\:f(f(x)) = \dfrac{1}{ \:  \: \dfrac{2 + x}{1 + x}  \:  \: }

\rm :\longmapsto\:f(f(x)) = \dfrac{1 + x}{2 + x }

Now,

\rm :\longmapsto\:f(f(f(x))) = \dfrac{1}{1 + f(f( x)) }

\rm :\longmapsto\:f(f(f(x))) = \dfrac{1}{1 + \dfrac{1 + x}{2 + x}  }

\rm :\longmapsto\:f(f(f(x))) = \dfrac{1}{\dfrac{2 + x + 1 + x}{2 + x}  }

\rm :\longmapsto\:f(f(f(x))) = \dfrac{1}{\dfrac{3 + 2x}{2 + x}  }

\rm :\longmapsto\:f(f(f(x))) = \dfrac{2 + x}{3 + 2x}

Additional Information :-

One - one :-

In order to show that f(x) is one - one, we have to choose two elements x and y belongs to domain such that f(x) = f(y), if on simplifying we get x = y, then f(x) is one - one otherwise its not one - one.

Onto :-

In order to show that f(x) is onto, we have to choose an element y belongs to co - domain such that f(x) = y. Then represent x as a function of g(y). If for every y, x exist, then f(x) is onto.

Similar questions