Math, asked by fffoooooooooooot, 19 days ago

f(x) is a polynomial function. Two conditions are given.
\boxed{\begin{aligned}&(1)\ f(a+b)=f(a)+f(b)+3xy\\&(2)\ f'(0)=1\end{aligned}}
Find f(x).

Answers

Answered by user0888
7

\Large\text{\underline{\underline{Question}}}

We have two conditions: -

\text{$\cdots\longrightarrow\boxed{f(a+b)=f(a)+f(b)+3ab.}$ $\cdots$(1)}

\text{$\cdots\longrightarrow\boxed{f'(0)=1.}$ $\cdots$(2)}

Find such a polynomial function f(x).

\Large\text{\underline{\underline{Explanation}}}

Main concept

Let's use the first principle of derivative -

\text{$\cdots\longrightarrow\displaystyle\boxed{\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}. $[The first principle of derivative]$}$}

\Huge\text{[1]}

\text{$\cdots\longrightarrow\boxed{\begin{aligned}\displaystyle&f'(x)\\\\&=\lim_{h\to0}\dfrac{f(x+h)-f(x)}{h}\\\\&=\lim_{h\to0}\dfrac{f(x)+f(h)+3hx-f(x)}{h}\\\\&=\lim_{h\to0}\dfrac{f(h)+3hx}{h}\\\\&=3x+\lim_{h\to0}\dfrac{f(h)}{h}. $\end{aligned}}$}

\Huge\text{[2]}

Let's put x=0. It is given in (2), -

\text{$\cdots\longrightarrow\boxed{\displaystyle&\lim_{h\to0}\dfrac{f(h)}{h}=1.}$}

\Huge\text{[3]}

Then, by properties of limits, \text{$h\to$0} then f(0)\to0 as well. Since f(x) is continuous everywhere, the limiting value is equal to the function value.

\text{$\cdots\longrightarrow\boxed{f(0)=0.}$}

\Huge\text{[4]}

We already found the derivative in [1]. By integration, -

\cdots\longrightarrow\boxed{\begin{aligned}&f(x)\\\\\displaystyle&=\int f'(x) dx\\\\&=\int(3x+1)dx\\\\&=\dfrac{3}{2}x^{2}+x+C.\end{aligned}}

Since f(0)=0 in [3], -

\text{$\cdots\longrightarrow\boxed{C=0.}$}

Conclusion

Hence by [4], -

\cdots\longrightarrow\boxed{f(x)=\dfrac{3}{2}x^{2}+x.}

Answered by eeeemail
0

is a polynomial function. Two conditions are given.

Find .

Similar questions