Math, asked by XxAttuidequeenxX, 1 month ago


 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Factrization
1) \: 3 {x}^{2}  - x - 9
2) \:  12 {x}^{2}  - 7x + 1
3) {x}^{2}  - 14x + 48


No spam ❌❌

Need with solution...

Answers

Answered by Anonymous
33

\qquad \maltese \; {\underline{\purple{\underline{\pmb{\bf{Given : }}}}}}

\bullet \; {\underline{\boxed{\tt{ 3x^2 - x - 9 }}}}

\bullet \; {\underline{\boxed{\tt{ 12x^2 - 7x +1}}}}

\bullet \; {\underline{\boxed{\tt{ x^2 - 14x + 48 }}}}

\qquad \maltese \; {\underline{\purple{\underline{\pmb{\bf{To \; Find : }}}}}}

★ The factorised from of the expressions given

\qquad \maltese \; {\underline{\purple{\underline{\pmb{\bf{Full \; Solution: }}}}}}

★ Now here wee can see that we have been provided with 3 polynomials which could be classified into a Quadratic trinomial , Since the expressions are quadratic [ with degree 2 ] that means we can factorise the expression into 2 suitable factors

How to factorise ?

Now we know that the general form of a quadratic expression is such that

\bigstar \; {\underline{\boxed{\tt{ ax^2 + bx + c }}}} where the value x is considered to be the zero and  a , b , c are the constant terms following the condition a ≠ 0

We basically factorise the expression using the method of splitting middle term into such forms that ;

  • The product of the middle terms equals ax² × c
  • The sum of the middle terms equals to bx

Now keeping the above laws under notice let's perform the required action

Question 1 :

\bullet \; {\underline{\boxed{\tt{ 3x^2 - x - 9 }}}}

RequirEd AnswEr :

{ : \implies } \bf 3x^2 - x - 9

  • Now since the is no such whole number which exists that could satisfy the condition so , let's use the quadratic formula to solve it

{ : \implies } \bf \dfrac{-b \pm \sqrt{b^2 - 4ac} }{2a}

{ : \implies } \bf \dfrac{-1 \pm \sqrt{1^2 - 4(3)(9)} }{2(3)}

{ : \implies } \bf \dfrac{-1 \pm \sqrt{1 + 108} }{6}

{ : \implies } \bf \dfrac{-1 \pm \sqrt{1 09} }{6}

  • Since the delta ( Δ ) is  not a perfect square so , the expression can't bee factorised

Question 2 :

\bullet \; {\underline{\boxed{\tt{ 12x^2 - 7x +1}}}}

RequirEd AnswEr  :

{ : \implies } \bf 12x^2 - 7x + 1

{ : \implies } \bf 12x^2 - 4x -3x + 1

{ : \implies } \bf 4x(3 x - 1 ) - 1 ( 3x - 1 )

{ : \implies } \bf ( 4x - 1 ) ( 3x - 1 )

Question 3 :

\bullet \; {\underline{\boxed{\tt{ x^2 - 14x + 48 }}}}

RequirEd AnswEr :

{ : \implies } \bf x^2 - 14x + 48

{ : \implies } \bf x^2 - 7x - 7x + 48

{ : \implies } \bf x^2 - 7x - 7x + 48

{ : \implies } \bf x( x - 7 ) - 7 ( x - 7 )

{ : \implies } \bf ( x - 7 ) ( x - 7 )

\qquad \maltese \; {\underline{\purple{\underline{\pmb{\bf{Therefore : }}}}}}

  • The factors of the expression are such that

\bigstar \; {\underline{\boxed{\tt{ ( 4x- 1 ) ( 3x - 1 )}}}}

\bigstar \; {\underline{\boxed{\tt{ ( x- 7 ) ( x - 7 )}}}}

\qquad \maltese \; {\underline{\purple{\underline{\pmb{\bf{More \; To \; Know : }}}}}}

★ The general form of a polynomial is

\rightarrow \bf a_0 + a_1x +a_2x^2 + ...+ a_{n-1} x^{n-1} + a_nx^n

★ The nature of the roots are such that

  • They are real and distinct when D > 0
  • They are imaginary when D < 0
  • They are equal when D = 0

★ Some algebric Identities :

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c} \\ \tiny\bf{\dag}\:\underline{\frak{\rm{S}\frak{ome\:important\:algebric\:identities\:::}}} \\\\ \green{\bigstar}\:\rm \red{ (A+B)^{2} = A^{2} + 2AB + B^{2}} \\\\ \red{\bigstar}\rm\: \green{(A-B)^{2} = A^{2} - 2AB + B^{2}} \\\\ \orange{\bigstar}\rm\: \blue{A^{2} - B^{2} = (A+B)(A-B)}\\\\ \blue{\bigstar}\rm\: \orange{(A+B)^{2} = (A-B)^{2} + 4AB}\\\\ \pink{\bigstar}\rm\: \purple{(A-B)^{2} = (A+B)^{2} - 4AB}\\\\ \purple{\bigstar} \rm\: \pink{(A+B)^{3} = A^{3} + 3AB(A+B) + B^{3}}\\\\ \gray{\bigstar}\rm\:(A-B)^{3} = A^{3} - 3AB(A-B) + B^{3}\\\\ \bigstar\rm\: \gray{A^{3} + B^{3} = (A+B)(A^{2} - AB + B^{2})} \\\\ \end{array}}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by mrpanda3232
0

Answer:

tihu tu on haa kya yrr bolna

Similar questions