Math, asked by mariasheheryar, 3 months ago


find \: the \: area \: of \: each \: figure(take\pi = 3.14) \\  \\ \\
a) A circle of radius 16 cm
b) A semi circle of diameter 34 cm
c) a quarter circle of radius 50 cm ​

Answers

Answered by Anonymous
20

Given :-

a) A circle of radius 16 cm

b) A semi circle of diameter 34 cm

c) a quarter circle of radius 50 cm

To Find :-

  • The area of all these shapes by taking ( π = 3.14 )

Solution :-  

❒ Here, we’re given measures of different shapes and we need to find their areas. We can easily find their areas by putting the values in the formulas.  

____________

\underline{\bf{\dag} \;\; \mathfrak{As\;we\;know\;that:}}

\boxed{\sf{ \maltese \;\; Radius = \dfrac{diameter}{2}}}

\boxed{\sf{ \maltese \;\; Area\;of\;circle = \pi r^{2} }}

\boxed{\sf{ \maltese \;\; Area\;of\;semi-circle = \dfrac{ \pi r^{2}}{2} }}

\boxed{\sf{ \maltese \;\; Area\;of\;quarter\;of\;circle = \dfrac{ \pi r^{2}}{4} }} 

____________  

Finding the area of circle :-  

\sf \implies 3.14 \times 16\;cm \times 16 \; cm 

\sf \leadsto \;\; \bigstar \;\; 803.84 \;cm^{2}

Finding the area of semi-circle :-  

\sf \implies 3.14 \times \dfrac{34}{2} \times \dfrac{34}{2} \times \dfrac{1}{2} 

\bf {\dag} \;\; \dfrac{34}{2} \; \;is\;taken\;because \\\\we\;are\;given\;diameter  

\sf \implies 3.14 \times 17 \times 17 \times 0.5

\sf \leadsto \;\; \bigstar \;\; 453.73\;cm^{2} 

Finding the area of quarter of circle :-  

\sf \implies 3.14 \times 50\;cm \times 50\;cm \times \dfrac{1}{4}  

\sf \implies 3.14 \times 50\;cm \times 50\;cm \times 0.25 

\sf \leadsto \;\; \bigstar \;\; 1962.5 \;cm^{2} 

____________

Hence,  

  • Area of circle is 803.84  
  • Area of semi-circle is 453.73  
  • Area of quarter of circle is 1962.5  

____________

Answered by Anonymous
23

Given :

a) A circle of radius 16 cm

b) A semi circle of diameter 34 cm

c) a quarter circle of radius 50 cm

 \:  \:  \:

To find :

The Area of all Shapes

 \:  \:  \:

Solution :

 \:  \:  \:

{ \bf{ \red{a.)}}}  \: \color{blue} {\underline { \boxed{\bf{Area  \: of  \: Circle = \pi {r}^{2} }}}}

 \:  \:  \:

 \sf   : \implies3.14 \times 16 \times 16

 \:  \:  \:

 \sf  :  \implies803.84 \:  {cm}^{2}

___________________

 \:  \:  \:

 \red{ \bf{b.)}}  \: \color{blue}{ \underline { \boxed{ \bf{Area \:  Of  \: Semi  \: Circle \:  =  \dfrac{\pi {r}^{2} }{2} }}}}

 \:  \:  \:

 :   \sf\implies3.14 \times  \dfrac{34}{2}   \times \dfrac{34}{2}  \times  \dfrac{1}{2}

 \:  \:  \:

  \sf : \implies3.14 \times 17 \times 17\times0.5

 \:  \:  \:

 \sf :  \implies453.73  \: {cm}^{2}

___________________

 \:  \:  \:

    \red{\bf{ c.)} } \: \underline{ \boxed{ \color{blue} \bf Area  \: of  \: Quarter  \: Circle = \dfrac{\pi {r}^{2} }{4} }}

 \:  \:  \:

 \sf : \implies3.14 \times 50 \times 50 \times  \dfrac{1}{4}

 \:  \:  \:

 \sf  : \implies3.1 \times 50 \times 50 \times 0.25

 \:  \:  \:

  \sf : \implies1962.5  \: {cm}^{2}

___________________

 \:  \:  \:

Similar questions