Math, asked by Anonymous, 1 month ago


  \footnotesize\sf{ Prove \:  the  \: following \:  identities }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:
 \sf{ \frac{1}{cosec \:  A\:  -  \: cot \: A}  -  \frac{1}{sin \:A }  =   \frac{1}{sin \:A }  -   \frac{1}{cosec \: A  \: +  \: cot \: A} }
 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:
  \footnotesize\sf{ Don't \:  Spam}


Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{1}{cosec \: A\: - \: cot \: A} - \dfrac{1}{sin \:A }

On rationalizing the denominator, we get

\rm \:  =  \: \dfrac{1}{cosecA - cotA}  \times \dfrac{cosecA + cotA}{cosecA + cotA} - cosecA

We know,

\boxed{ \tt{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2} \: }}

So, using this, we get

\rm \:  =  \: \dfrac{cosecA + cotA }{{cosec}^{2} A -  {cot}^{2} A}  - cosecA

We know,

\boxed{ \tt{ \: {cosec}^{2}x-  {cot}^{2}x = 1 \: }}

So, using this, we get

\rm \:  =  \: \dfrac{cosecA + cotA}{1} - cotA

\rm \:  =  \: cosecA + cotA - cosecA

\rm \:  =  \: cotA

Thus,

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{1}{cose A - cot A} - \dfrac{1}{sinA } = cotA \: }} -  - (1)}

Now, Consider RHS

\rm :\longmapsto\:\dfrac{1}{sinA}  - \dfrac{1}{cosecA + cotA}

On rationalizing the denominator, we get

\rm \:  =  \: cosecA - \dfrac{1}{cosecA + cotA}  \times \dfrac{cosecA - cotA}{cosecA - cotA}

\rm \:  =  \: cosecA - \dfrac{cosecA - cotA}{ {cosec}^{2}A -  {cot}^{2}A}

\rm \:  =  \: cosecA - \dfrac{cosecA - cotA}{1}

\rm \:  =  \: cosecA - (cosecA - cotA)

\rm \:  =  \: cosecA - cosecA  + cotA

\rm \:  =  \: cotA

Thus,

 \red{\rm \implies\:\boxed{ \tt{ \: \dfrac{1}{sinA}  - \dfrac{1}{cosecA + cotA} = cotA}} -  - (2)}

Thus, from equation (1) and (2), we concluded that

\boxed{ \tt{ \:  \frac{1}{cosecA + cotA} -  \frac{1}{sinA} =  \frac{1}{sinA} -  \frac{1}{cosecA - cotA} \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by Roomithprem
2

Answer:

is this a html or something

anyways,thanks 4 following me^_^

Similar questions