Math, asked by mujeeb32, 1 year ago


 \frac{1 + 2 {sin}^2a }{1 + 3 { \tan }^{2} a}  =   { \cos }^{2} a \\

Attachments:

Answers

Answered by Anjiiii
0

Step-by-step explanation:

hope it helps you guys,,,,,,

Attachments:
Answered by Anonymous
3

SOLUTION:-

Take L.H.S

 =  >  \frac{1 + 2 {sin}^{2}A }{1 + 3 {tan}^{2} A }  \\  \\  = >  \frac{1 + 2 {sin}^{2} A }{1 + 3( \frac{ {sin}^{2} A }{ {cos}^{2} A }) }  \\  \\  =  >  \frac{1 + 2 {sin}^{2} A}{  \frac{ {cos}^{2} A + 3 {sin}^{2} A }{ {cos}^{2} A}  }  \\  \\  =  >  \frac{(1 + 2 {sin}^{2} A) {cos}^{2} A }{ {cos}^{2} A +  {sin}^{2} A + 2 {sin}^{2} A  }  \\  \\  =  >  \frac{(1 + 2 {sin}^{2} A) {cos}^{2} A}{(1 +2 {sin}^{2} A)  }  \:  \:  \:  \: \:  \:  \:  \: [ {cos}^{2}  \theta +  {sin}^{2}  \theta = 1] \\  \\  =  >  {cos}^{2} A  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: [R.H.S.]

Hence,

Proved.

Hope it helps ☺️

Similar questions