Math, asked by pallavi3439, 10 months ago


 \frac{1}{2 +  \sqrt{3} }  +  \frac{2}{ \sqrt{5}  -  \sqrt{3}  }  +  \frac{1}{2 -  \sqrt{5} }
please solve fast!!​

Answers

Answered by mysticd
1

 \frac{1}{2 + \sqrt{3} } + \frac{2}{ \sqrt{5} - \sqrt{3} } + \frac{1}{2 - \sqrt{5} }

 = \frac{(2-\sqrt{3})}{(2 + \sqrt{3})(2-\sqrt{3})} + \frac{2(\sqrt{5}+\sqrt{3})}{ (\sqrt{5} - \sqrt{3} )(\sqrt{5}+\sqrt{3})} + \frac{(2+\sqrt{5})}{(2 - \sqrt{5})(2+\sqrt{5}) }

 = \frac{(2-\sqrt{3})}{2^{2}-(\sqrt{3})^{2}} + \frac{2(\sqrt{5}+\sqrt{3})}{ (\sqrt{5})^{2} -( \sqrt{3} )^{2}} + \frac{(2+\sqrt{5})}{2^{2} - (\sqrt{5})^{2}}

 = \frac{(2-\sqrt{3})}{4-3} + \frac{2(\sqrt{5}+\sqrt{3})}{ 5-3} + \frac{(2+\sqrt{5})}{4-5}

 = \frac{(2-\sqrt{3})}{1} + \frac{2(\sqrt{5}+\sqrt{3})}{ 2} + \frac{(2+\sqrt{5})}{-1}

 = 2-\sqrt{3} + \sqrt{5} + \sqrt{3} - 2-\sqrt{5}

 = 0

Therefore.,

 \red{\frac{1}{2 + \sqrt{3} } + \frac{2}{ \sqrt{5} - \sqrt{3} } + \frac{1}{2 - \sqrt{5} } }\green{= 0}

•••♪

Similar questions