Math, asked by phanisai0526, 5 months ago


 \frac{1}{7 + 4 \sqrt{3} } +  \frac{1}{2 +  \sqrt{5} }
simplify

Answers

Answered by muskanperween225
0

Step-by-step explanation:

 \frac{1}{7 +  4\sqrt{3} }  +  \frac{1}{2 +  \sqrt{5} }

Taking 1st part, and rationalise the denominator,

 \frac{1}{7 + 4 \sqrt{3} }  \times  \frac{7 - 4 \sqrt{3} }{7 - 4 \sqrt{3} }

 =  \frac{7 - 4 \sqrt{3} }{(7 + 4 \sqrt{3} )(7 - 4 \sqrt{3}) }

 =  \frac{7  - 4 \sqrt{3} }{( {7)}^{2} - ( {4 \sqrt{3} )}^{2}  }

 =  \frac{7 - 4 \sqrt{3} }{49 - 16 \times 3}

 =  \frac{7 - 4 \sqrt{3} }{49 - 48}

 =  \frac{7 - 4 \sqrt{3} }{1}  = 7 - 4 \sqrt{3}

Taking 2nd part, and rationalise the denominator,

 \frac{1}{2 +  \sqrt{5} }  \times  \frac{2 -  \sqrt{5} }{2 -  \sqrt{5} }

 =  \frac{2 -  \sqrt{5} }{(2 +  \sqrt{5} )(2 -  \sqrt{5} )}

 =  \frac{2 -  \sqrt{5} }{( {2)}^{2}  - ( { \sqrt{5}) }^{2} }

 =  \frac{2 -  \sqrt{5} }{4 - 5}

 =  \frac{2 -  \sqrt{5} }{ - 1}

 =  - 1(2 -  \sqrt{5} ) =  \sqrt{5 }  - 2

Given,

(7 - 4 \sqrt{3} ) + ( \sqrt{5}  - 2)

 = 7 - 4 \sqrt{3}  +  \sqrt{5}  - 2

 = 5 - 4 \sqrt{3}  +  \sqrt{5}

Similar questions