Math, asked by NKnav, 1 year ago



 \frac{1}{ \sqrt{2} +  \sqrt{3}  -  \sqrt{5}  }  +  \frac{1}{ \sqrt{2} -  \sqrt{3}  -  \sqrt{5}  }  =
plz suggest an easy method for mcqs


siddhartharao77: I think the answer is root2/2. ?
NKnav: How??
siddhartharao77: is it correct?
NKnav: Yes it's correct

Answers

Answered by siddhartharao77
4
 Given : \frac{1}{ \sqrt{2} +  \sqrt{3} -  \sqrt{5}  } +  \frac{1}{ \sqrt{2} -  \sqrt{3} -  \sqrt{5}  }

 \frac{( \sqrt{2} -  \sqrt{3} -  \sqrt{5}) + ( \sqrt{2}+  \sqrt{3}-  \sqrt{5})}{( \sqrt{2} +  \sqrt{3}-  \sqrt{5} )( \sqrt{2}  -  \sqrt{3}-  \sqrt{5}  ) }

 \frac{2 \sqrt{5} - 2 \sqrt{2}  }{( \sqrt{2} +  \sqrt{3} -  \sqrt{5} )( \sqrt{2} -  \sqrt{3} -  \sqrt{5})  }

 - \frac{2 \sqrt{5} - 2 \sqrt{2}  }{( \sqrt{2} +  \sqrt{3} -  \sqrt{5} )( \sqrt{2} -  \sqrt{3} -  \sqrt{5} )   }

 - \frac{2 \sqrt{5} - 2 \sqrt{2}  }{4 - 2 \sqrt{10} }

 - \frac{2( \sqrt{5} -  \sqrt{2})  }{2(2 -  \sqrt{10})}

 - \frac{ \sqrt{5} -  \sqrt{2} }{2 -  \sqrt{10} }

 - \frac{ (\sqrt{5} -  \sqrt{2})(2 +  \sqrt{10})  }{(2 -  \sqrt{10} )(2 +  \sqrt{10}) }

 -\frac{3 \sqrt{2} }{-6}

 \frac{ \sqrt{2} }{2}



Hope this helps!

siddhartharao77: This is very easy method. Gud luck!
NKnav: Thank you!!
Answered by Anonymous
1
Hi,

Please see the attached file!


Thanks
Attachments:

NKnav: Thanks a lot!!
Similar questions