Answers
Answer:
4 + √6 - √3
Solution:
We need to find the value of ;
1/(√6 - √5) - 1/(√5 - √4) + 1/(√4 - √3)
Rationalising the first term, we get ;
1/(√6 - √5) = (√6 + √5)/(√6 - √5)(√6 + √5)
= (√6 + √5)/[(√6)² - (√5)²]
= (√6 + √5)/(6 - 5)
= (√6 + √5)/1
= √6 + √5
Rationalising the second term, we get ;
1/(√5 - √4) = (√5 + √4)/(√5 - √4)(√5 + √4)
= (√5 + √4)/[(√5)² - (√4)²]
= (√5 + √4)/(5 - 4)
= (√5 + √4)/1
= √5 + √4
Rationalising the third term, we get ;
1/(√4 - √3) = (√4 + √3)/(√4 - √3)(√4 + √3)
= (√4 + √3)/[(√4)² - (√3)²]
= (√4 + √3)/(4 - 3)
= (√4 + √3)/1
= √4 + √3
Thus,
1/(√6 - √5) - 1/(√5 - √4) + 1/(√4 - √3)
= (√6 + √5) - (√5 - √4) + (√4 - √3)
= √6 + √5 - √5 + √4 + √4 - √3
= √6 + 2√4 - √3
= √6 + 2×2 - √3
= √6 + 4 - √3
= 4 + √6 - √3
Hence,
The required value of
1/(√6 - √5) - 1/(√5 - √4) + 1/(√4 - √3) is
4 + √6 - √3 .