Answers
Answer:
Answer:
\begin{gathered}\frac{1}{x} - \frac{1}{x - 2} = 3 \\ take \: lcm \: \\ lcm \: (x \: and \: x - 2) = x(x - 2) \\ then \\ \frac{(x - 2) - x}{x(x - 2)} = 3 \\ by \: cross \: multiplication \\ x - 2 - x = 3x(x - 2) \\ - 2 = 3 {x}^{2} - 6x \\ 3 {x}^{2} - 6x + 2 = 0 \\ so \: x = \frac{ - (- 6 )\frac{ + }{} \sqrt{ {( - 6)}^{2} - 4(3)(2)} }{2 \times 3} \\ = \frac{6 \frac{ + }{} \sqrt{36 - 24} }{6} \\ = 1 \frac{ + }{} \frac{ \sqrt{12} }{6} \\ so \: x = 1 + \frac{ \sqrt{12} }{6} \\ or \: 1 - \frac{ \sqrt{12} }{6}\end{gathered}
x
1
−
x−2
1
=3
takelcm
lcm(xandx−2)=x(x−2)
then
x(x−2)
(x−2)−x
=3
bycrossmultiplication
x−2−x=3x(x−2)
−2=3x
2
−6x
3x
2
−6x+2=0
sox=
2×3
−(−6)
+
(−6)
2
−4(3)(2)
=
6
6
+
36−24
=1
+
6
12
sox=1+
6
12
or1−
6
12