![\frac{3}{ {1}^{2} \times {2}^{2} } \times \frac{5}{ {2}^{2} \times {3}^{2} } \times \frac{7}{ {3}^{2} \times {4}^{2} } \times \frac{19}{ {9}^{2} \times {10}^{2} } \frac{3}{ {1}^{2} \times {2}^{2} } \times \frac{5}{ {2}^{2} \times {3}^{2} } \times \frac{7}{ {3}^{2} \times {4}^{2} } \times \frac{19}{ {9}^{2} \times {10}^{2} }](https://tex.z-dn.net/?f=+%5Cfrac%7B3%7D%7B+%7B1%7D%5E%7B2%7D++%5Ctimes++%7B2%7D%5E%7B2%7D+%7D++%5Ctimes++%5Cfrac%7B5%7D%7B+%7B2%7D%5E%7B2%7D+%5Ctimes++%7B3%7D%5E%7B2%7D++%7D++%5Ctimes++%5Cfrac%7B7%7D%7B+%7B3%7D%5E%7B2%7D+%5Ctimes++%7B4%7D%5E%7B2%7D++%7D++%5Ctimes++%5Cfrac%7B19%7D%7B+%7B9%7D%5E%7B2%7D++%5Ctimes++%7B10%7D%5E%7B2%7D+%7D+)
Answers
Given:-
⠀⠀
⠀⠀
To Find:-
⠀⠀
⠀⠀
STEP BY STEP EXPLANATION:-
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀
⠀⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
⠀⠀
To solve -
Find the required value of -
=> { [ 3 ] / [ 1² × 2² ] } × { [ 5 ] / [ 2² × 3² ] } × { [ 7 ] / [ 3² × 4² ] } × { [ 19 ] / [ 9² + 10² ] } .
Solution -
Here we have to find the value of -
=> { [ 3 ] / [ 1² × 2² ] } × { [ 5 ] / [ 2² × 3² ] } × { [ 7 ] / [ 3² × 4² ] } × { [ 19 ] / [ 9² + 10² ] } .
We can observe that any term of the given sequence can be represented as - .
=> [ a + b ] / [ a² + b² ]
But here as the terms are not consecutive , we have to solve manually.
=> { [ 3 ] / [ 1² × 2² ] } × { [ 5 ] / [ 2² × 3² ] } × { [ 7 ] / [ 3² × 4² ] } × { [ 19 ] / [ 9² + 10² ] } .
=> { [ 1 ] / [ 1² × 2² ] } × { [ 5 ] / [ 2² × 3 ] } × { [ 7 ] / [ 3² × 4² ] } × { [ 19 ] / [ 9² + 10² ] }
=> { [ 1 ] / [ 4 ] } × { [ 5 ] / [ 12 ] } × { [ 7 ] / [ 144] } × { [ 19 ] / [ 8100 ] }
=> [ 665 ] / [ 4 × 12 × 144 × 8100 ]
=> [ 665 ] / [ 11197440 ] .
This is the required answer .
________________________________________
Additional Information -
( a + b )² = a² + 2ab + b²
( a - b )² = a² - 2ab + b²
( a + b )( a - b ) = a² - b²
( a + b )³ = a³ + 3ab ( a + b ) + b³
( a - b )³ = a³ - 3ab ( a + b ) - b³
( a + b + c )³ = a³ + b³ + c³ + 3 ( a + b )( b + c )( c + a )
a³ + b³ + c³ - 3abc = ( a + b + c )( a² + b² + c² - ab - bc - ca )
When a + b + c = 0 ,
a³ + b³ + c³ = 3abc .
_________________________________