Math, asked by Unananti788, 1 month ago

\frac{3}{2x - 1} + \frac{4}{2x + 1} = \frac{7}{2x} \\ \\ \\

Find out the value of x​

Answers

Answered by Gayatrishende1234
14

 =  >  \frac{3}{2} x - 1 +  \frac{4}{2} x + 1 =  \frac{7}{2} x

 =  >  \frac{3x}{2}  - 1 +  \frac{4}{2} x + 1 =  \frac{7}{2}x

 =  >  \frac{3x}{2}  - 1 + 2x + 1 =  \frac{7}{2}x

 =  >   \frac{3x}{2}  + 2x =  \frac{7}{2} x

 =  >  \frac{3x}{2}  + 2x =  \frac{7x}{2}

 =  > 2 \frac{3x}{2}  + 2.2x = 2 \frac{7x}{2}

 =  > 3x + 2.2x = 7x

 =  > 3x + 4x = 7x

 =  > 7x = 7x

 =  > 7x - 7x = 7x - 7x

 =  > 0 = 0

I hope this will help you dear..

Always stay safe and stay healthy..

Answered by Aryan0123
7

Solution:

\sf{\dfrac{3}{2x-1}+\dfrac{4}{2x+1}=\dfrac{7}{2x}}\\\\

Taking LCM,

\Rightarrow \: \: \sf{\dfrac{3(2x+1)+4(2x-1)}{(2x-1)(2x+1)}=\dfrac{7}{2x}}\\\\

\Rightarrow \ \sf{\dfrac{6x+3+8x-4}{4x^{2} -1}=\dfrac{7}{2x}}\\\\

Further simplifying,

\Rightarrow \: \sf{\dfrac{14x-1}{4x^{2} -1}=\dfrac{7}{2x}}\\\\

On cross multiplication,

\Rightarrow \: \sf{7(4x^{2} -1)=2x(14x-1)}\\

\Rightarrow \: \sf{28x^{2} -7=28x^{2} -2x}\\

\Rightarrow \: \sf{-7=-2x}\\

\Rightarrow \: \sf{2x=7}\\

\Rightarrow \: \sf{x=\dfrac{7}{2}}\\\\

\Rightarrow \: \sf{x=3.5}

\therefore \boxed{\bf{x=3.5}}\\\\

KNOW MORE:

  • (a + b)² = a² + b² + 2ab
  • (a - b)² = a² + b² - 2ab
  • a² - b² = (a + b)(a - b)
  • (a + b + c)² = a² + b² + c² + 2(ab + bc + ac)
  • (a + b)³ = a³ + b³ + 3ab(a + b)
Similar questions