Math, asked by dipjyotid107, 1 month ago


 \frac{3a}{x} -  \frac{2b}{y}  =  - 5 \\  \frac{a}{x}  +  \frac{3b}{y}    = 2 \\
please solve equations

Answers

Answered by senboni123456
1

Step-by-step explanation:

The given equations are

 \frac{3a}{x} - \frac{2b}{y} = - 5 \\ \frac{a}{x} + \frac{3b}{y} = 2 \\

 \tt \purple{ \: Put \:  \: \:   \frac{1}{x}  = u \:  \:  \: and \:  \:  \frac{1}{y}  = v} \\

So, the equations becomes

 (3a)u - (2b)v = - 5 \\ (a)u+ (3b)v= 2 \\

  \implies(3a)u - (2b)v +  5 = 0 \\ \implies (a)u+ (3b)v - 2 = 0 \\

Applying cross multiplication method,

 \frac{u}{4b - 15b}   =  \frac{v}{5a + 6a} =  \frac{1}{9ab + 2ab}  \\

 \implies \frac{u}{ - 11b}   =  \frac{v}{11a} =  \frac{1}{11ab }  \\

 \implies \pink{ u   = \frac{ - 1}{a}   \:  \:  \: and \:  \:  \:  v =  \frac{1}{b }}  \\

So,

 \implies  \frac{1}{x}    = \frac{ - 1}{a}   \:  \:  \: and \:  \:  \:   \frac{1}{y}  =  \frac{1}{b }  \\

 \implies  \sf\red{  x   = - a \:  \:  \: and \:  \:  \:   y =  b }  \\

Similar questions