Math, asked by pawan9526, 1 year ago


 \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5  } ?} = a + b \sqrt{5}

Answers

Answered by mitajoshi11051976
3
\huge\mathbb{A~N~S~W~E~R}

<b>

✔ For this type of question we have to

do this ,

 = \frac{4 + 3 \ \sqrt{5} }{4-3\sqrt{5}} \\ \\

 \frac{4 + 3 \ \sqrt{5} }{4 - 3 \sqrt{5} } = a + b \sqrt{5} \\ \\ \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} } \times \frac{4 - 3 \sqrt{5} }{4 - 3 \sqrt{5} } = a + b \sqrt{5} \\ \\ \frac{16 - 45}{16 - 24 \sqrt{5} - 45} = a + b \sqrt{5} \\ \\ \frac{ - 29}{ - 29 - 24 \sqrt{5} } = a + b \sqrt{5} \\ \\ - 29 - 29 + 24 \sqrt{5} = a + b \sqrt{5} \\ \\ - 58 + 24 \sqrt{5} = a + b \sqrt{5} \\ \\ \\ a = - 58 \\ \\ b = 24

{\large\color{Red}{Answer~is~(-58)~and~24 }}

mark as brainliest answer and plz follow me.

<marquee>

{\large\color{Red}{ Thank you }}
Answered by pratyush4211
4
\underline{\underline{\mathbf{\huge{Question}}}}

 \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5 } ?} = a + b \sqrt{5}

\underline{\underline{\mathbf{\huge{Answer}}}}

 \frac{4 + 3\sqrt{5} }{4 - 3 \sqrt{5} } = a + b\sqrt{5}

Rationalising Factor of a-b is a+b

then

 \frac{4 + 3\sqrt{5} \times4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} \times 4 + 3 \sqrt{5} } \\ \\ \frac{(4 + 3 \sqrt{5}) {}^{2} }{(4 {}^{2} ) - (3 \sqrt{5 }) {}^{2} }

(a+b)²=a²+b²+2ab

(4+3√5)²=4²+(3√5)²+2×4×3√5

=16+9×5+24√5

=16+45+24√5

=61+24√5

a²-b²=(a+b)(a-b)

=4²-3√5²

=16-45

=-29

 \frac{61 + 24\sqrt{5} }{ - 29} = a + b \sqrt{5} \\ \\ \frac{ - 61 - 24 \sqrt{5} }{29} = a + b \sqrt{5} \\ \\

Comparing Sides

a = \frac{ - 61}{29} \\ \\ b = \frac{ - 24}{29} \\ \\ a + b \sqrt{5} = \frac{ - 61}{29} + \frac{ - 24}{29} \sqrt{5}
Similar questions